IDEAS home Printed from https://ideas.repec.org/h/spr/isochp/978-0-387-32942-0_9.html
   My bibliography  Save this book chapter

Logic Inference and a Decomposition Algorithm for the Resource-Constrained Scheduling of Testing Tasks in the Development of New Pharmaceutical and Agrochemical Products

In: Handbook on Modelling for Discrete Optimization

Author

Listed:
  • Christos T. Maravelias

    (Carnegie Mellon University)

  • Ignacio E. Grossmann

    (Carnegie Mellon University)

Abstract

In highly regulated industries, such as agrochemical and pharmaceutical, new products have to pass a number of regulatory tests related to safety, efficacy and environmental impact, to gain FDA approval. If a product fails one of these tests it cannot enter the market place and the investment in previous tests is wasted. Depending on the nature of the products, testing may last up to 10 years, and the scheduling of the tests should be made with the goal of minimizing the time to market and the cost of testing. Maravelias and Grossmann (2001) proposed a mixed-integer linear program (MILP) that considers a set of candidate products for which the cost, duration and probability of success of their tests is given, as well as the potential income if the products are successfully launched. Furthermore, there are limited resources in terms of laboratories and number of technicians. If needed, a test may be outsourced at a higher cost. The major decisions in the model are: (i) the decision to perform in-house or outsource a testing task, (ii) the assignment of resources to testing tasks, and (iii) the sequencing and timing of tests. The objective is to maximize the net present value of multiple projects. The mixed-integer linear program can become very expensive for solving real world problems (2–10 products and 50–200 tests). In order to improve the linear programming relaxation, we propose the use of logic cuts that are derived from implied precedences that arise in the graphs of the corresponding schedules. The solution of a single large-scale problem is avoided with a heuristic decomposition algorithm that relies on solving a reduced MILP model that embeds the optimal schedules obtained for the individual products. It is shown that a tight upper bound can be easily determined for this decomposition algorithm. On a set of test problems the proposed algorithm is shown to be one to two orders of magnitude faster than the full space method, yielding solutions that are optimal or near optimal.

Suggested Citation

  • Christos T. Maravelias & Ignacio E. Grossmann, 2006. "Logic Inference and a Decomposition Algorithm for the Resource-Constrained Scheduling of Testing Tasks in the Development of New Pharmaceutical and Agrochemical Products," International Series in Operations Research & Management Science, in: Gautam Appa & Leonidas Pitsoulis & H. Paul Williams (ed.), Handbook on Modelling for Discrete Optimization, chapter 0, pages 265-289, Springer.
  • Handle: RePEc:spr:isochp:978-0-387-32942-0_9
    DOI: 10.1007/0-387-32942-0_9
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:isochp:978-0-387-32942-0_9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.