IDEAS home Printed from https://ideas.repec.org/h/spr/isochp/978-0-387-32942-0_11.html
   My bibliography  Save this book chapter

Radiation Treatment Planning: Mixed Integer Programming Formulations and Approaches

In: Handbook on Modelling for Discrete Optimization

Author

Listed:
  • Michael C. Ferris

    (University of Wisconsin)

  • Robert R. Meyer

    (University of Wisconsin)

  • Warren D’Souza

    (University of Maryland School of Medicine)

Abstract

Radiation therapy is extensively used to treat a wide range of cancers. Due to the increasing complexities of delivery mechanisms, and the improved imaging devices that allow more accurate determination of cancer location, determination of high quality treatment plans via trial-and-error methods is impractical and computer optimization approaches to planning are becoming more critical and more difficult. We outline three examples of the types of treatment planning problem that can arise in practice and strive to understand the commonalities and differences in these problems. We highlight optimization approaches to the problems, and particularly consider approaches based on mixed integer programming. Details of the mathematical formulations and algorithmic approaches are developed and pointers are given to supporting literature that shows the efficacy of the approaches in practical situations.

Suggested Citation

  • Michael C. Ferris & Robert R. Meyer & Warren D’Souza, 2006. "Radiation Treatment Planning: Mixed Integer Programming Formulations and Approaches," International Series in Operations Research & Management Science, in: Gautam Appa & Leonidas Pitsoulis & H. Paul Williams (ed.), Handbook on Modelling for Discrete Optimization, chapter 0, pages 317-340, Springer.
  • Handle: RePEc:spr:isochp:978-0-387-32942-0_11
    DOI: 10.1007/0-387-32942-0_11
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ali Tuncel & Felisa Preciado & Ronald Rardin & Mark Langer & Jean-Philippe Richard, 2012. "Strong valid inequalities for fluence map optimization problem under dose-volume restrictions," Annals of Operations Research, Springer, vol. 196(1), pages 819-840, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:isochp:978-0-387-32942-0_11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.