IDEAS home Printed from https://ideas.repec.org/h/spr/isochp/978-0-387-23081-8_18.html
   My bibliography  Save this book chapter

Multiple Objective Linear Programming with Fuzzy Coefficients

In: Multiple Criteria Decision Analysis: State of the Art Surveys

Author

Listed:
  • Masahiro Inuiguchi

    (Osaka University)

Abstract

In this paper, we treat multiple objective programming problems with fuzzy coefficients. We introduce the approaches based on possibility and necessity measures. Our aim in this paper is to describe the treatments of the problem rather than the solution method for the problem. We describe the modality constrained programming approach, the modality goal programming approach and modal efficiency approach. In the first approach, we discuss treatments of fuzziness in the programming problems. The extensions of a fuzzy relation to the relation between fuzzy numbers are developed in order to treat generalized constraints. In the second approach, we show that two kinds of differences between a fuzzy objective function value and a fuzzy target are conceivable under the fuzziness. We describe the distinction of their applications in programming problems. In the third approach, we describe how the efficiency can be extended to multiple objective programming problems with fuzzy coefficients. Necessary and sufficient conditions for a feasible solution to satisfy the extended efficiency are discussed. Finally some concluding remarks are given.

Suggested Citation

  • Masahiro Inuiguchi, 2005. "Multiple Objective Linear Programming with Fuzzy Coefficients," International Series in Operations Research & Management Science, in: Multiple Criteria Decision Analysis: State of the Art Surveys, chapter 0, pages 723-757, Springer.
  • Handle: RePEc:spr:isochp:978-0-387-23081-8_18
    DOI: 10.1007/0-387-23081-5_18
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zeng, Xieting & Kang, Shaozhong & Li, Fusheng & Zhang, Lu & Guo, Ping, 2010. "Fuzzy multi-objective linear programming applying to crop area planning," Agricultural Water Management, Elsevier, vol. 98(1), pages 134-142, December.
    2. Masamichi Kon, 2020. "A scalarization method for fuzzy set optimization problems," Fuzzy Optimization and Decision Making, Springer, vol. 19(2), pages 135-152, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:isochp:978-0-387-23081-8_18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.