IDEAS home Printed from https://ideas.repec.org/h/spr/innchp/978-3-319-39056-7_4.html
   My bibliography  Save this book chapter

Recent Trends in Technology Mining Approaches: Quantitative Analysis of GTM Conference Proceedings

In: Anticipating Future Innovation Pathways Through Large Data Analysis

Author

Listed:
  • Nadezhda Mikova

    (Higher School of Economics)

Abstract

This paper performs a quantitative analysis of trends in technology mining (TM) approaches using 5 years (2011–2015) of Global TechMining (GTM) conference proceedings as a data source. These proceedings are processed with a help of Vantage Point software, providing an approach “tech mining for analyzing tech mining.” Through quantitative data processing (bibliometric analysis, natural language processing, statistical analysis, principal component analysis (PCA)), this study presents an overview, explores dynamics and potentials for existing and advanced TM methodologies in three layers: related methods, data sources, and software tools. The main groups and combinations of TM and related methods are identified. Key trends and weak signals concerning the use of existing (natural language processing (NLP), mapping, network analysis, etc.) and emerging methods (web scraping, ontology modeling, advanced bibliometrics, semantic the theory of inventive problem solving (TRIZ), sentiment analysis, etc.) are detected. The results are considered to be taken as a guide for researchers, practitioners, or policy makers involved in foresight activity.

Suggested Citation

  • Nadezhda Mikova, 2016. "Recent Trends in Technology Mining Approaches: Quantitative Analysis of GTM Conference Proceedings," Innovation, Technology, and Knowledge Management, in: Tugrul U. Daim & Denise Chiavetta & Alan L. Porter & Ozcan Saritas (ed.), Anticipating Future Innovation Pathways Through Large Data Analysis, chapter 0, pages 59-69, Springer.
  • Handle: RePEc:spr:innchp:978-3-319-39056-7_4
    DOI: 10.1007/978-3-319-39056-7_4
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:innchp:978-3-319-39056-7_4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.