IDEAS home Printed from https://ideas.repec.org/h/spr/innchp/978-3-319-39056-7_11.html
   My bibliography  Save this book chapter

Identifying Technological Topic Changes in Patent Claims Using Topic Modeling

In: Anticipating Future Innovation Pathways Through Large Data Analysis

Author

Listed:
  • Hongshu Chen

    (University of Technology Sydney
    Beijing Institute of Technology)

  • Yi Zhang

    (University of Technology Sydney
    Beijing Institute of Technology)

  • Donghua Zhu

    (Beijing Institute of Technology)

Abstract

Patent claims usually embody the core technological scope and the most essential terms to define the protection of an invention, which makes them the ideal resource for patent topic identification and theme changes analysis. However, conducting content analysis manually on massive technical terms is very time-consuming and laborious. Even with the help of traditional text mining techniques, it is still difficult to model topic changes over time, because single keywords alone are usually too general or ambiguous to represent a concept. Moreover, term frequency that used to rank keywords cannot separate polysemous words that are actually describing a different concept. To address this issue, this research proposes a topic change identification approach based on latent dirichlet allocation, to model and analyze topic changes and topic-based trend with minimal human intervention. After textual data cleaning, underlying semantic topics hidden in large archives of patent claims are revealed automatically. Topics are defined by probability distributions over words instead of terms and their frequency, so that polysemy is allowed. A case study using patents published in the United States Patent and Trademark Office (USPTO) from 2009 to 2013 with Australia as their assignee country is presented, to demonstrate the validity of the proposed topic change identification approach. The experimental result shows that the proposed approach can be used as an automatic tool to provide machine-identified topic changes for more efficient and effective R&D management assistance.

Suggested Citation

  • Hongshu Chen & Yi Zhang & Donghua Zhu, 2016. "Identifying Technological Topic Changes in Patent Claims Using Topic Modeling," Innovation, Technology, and Knowledge Management, in: Tugrul U. Daim & Denise Chiavetta & Alan L. Porter & Ozcan Saritas (ed.), Anticipating Future Innovation Pathways Through Large Data Analysis, chapter 0, pages 187-209, Springer.
  • Handle: RePEc:spr:innchp:978-3-319-39056-7_11
    DOI: 10.1007/978-3-319-39056-7_11
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:innchp:978-3-319-39056-7_11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.