IDEAS home Printed from https://ideas.repec.org/h/spr/innchp/978-3-319-39056-7_10.html
   My bibliography  Save this book chapter

Identifying Targets for Technology Mergers and Acquisitions Using Patent Information and Semantic Analysis

In: Anticipating Future Innovation Pathways Through Large Data Analysis

Author

Listed:
  • Lu Huang

    (Beijing Institute of Technology)

  • Lining Shang

    (Beijing Institute of Technology)

  • Kangrui Wang

    (Beijing Institute of Technology)

  • Alan L. Porter

    (Georgia Institute of Technology, Technology Policy & Assessment Ctr.
    Search Technology Inc.)

  • Yi Zhang

    (Beijing Institute of Technology
    University of Technology Sydney)

Abstract

Technology plays an increasingly important role in today’s enterprise competition. Technology mergers and acquisitions (Tech M&A), as an effective way to acquire the external technology resources rapidly, have attracted attention from researchers for their potential realization of value through synergy. A big challenge is how to identify appropriate targets to support the effective technology integration. In this study, we developed a model of target selection of Tech M&A from the perspective of technology relatedness and R&D capability. We present results for the Tech M&A case in China’s cloud computing industry.

Suggested Citation

  • Lu Huang & Lining Shang & Kangrui Wang & Alan L. Porter & Yi Zhang, 2016. "Identifying Targets for Technology Mergers and Acquisitions Using Patent Information and Semantic Analysis," Innovation, Technology, and Knowledge Management, in: Tugrul U. Daim & Denise Chiavetta & Alan L. Porter & Ozcan Saritas (ed.), Anticipating Future Innovation Pathways Through Large Data Analysis, chapter 0, pages 173-186, Springer.
  • Handle: RePEc:spr:innchp:978-3-319-39056-7_10
    DOI: 10.1007/978-3-319-39056-7_10
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Katsuyuki Kaneko & Yuya Kajikawa, 2023. "Novelty Score and Technological Relatedness Measurement Using Patent Information in Mergers and Acquisitions: Case Study in the Japanese Electric Motor Industry," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 24(2), pages 163-177, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:innchp:978-3-319-39056-7_10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.