IDEAS home Printed from https://ideas.repec.org/h/spr/ihichp/978-3-540-92673-3_35.html
   My bibliography  Save this book chapter

Ontology-Based Recommender Systems

In: Handbook on Ontologies

Author

Listed:
  • Stuart E. Middleton

    (University of Southampton)

  • David De Roure

    (University of Southampton)

  • Nigel R. Shadbolt

    (University of Southampton)

Abstract

Summary We present an overview of the latest approaches to using ontologies in recommender systems and our work on the problem of recommending on-line academic research papers. Our two experimental systems, Quickstep and Foxtrot, create user profiles from unobtrusively monitored behaviour and relevance feedback, representing the profiles in terms of a research paper topic ontology. A novel profile visualization approach is taken to acquire profile feedback. Research papers are classified using ontological classes and collaborative recommendation algorithms used to recommend papers seen by similar people on their current topics of interest. Ontological inference is shown to improve user profiling, external ontological knowledge used to successfully bootstrap a recommender system and profile visualization employed to improve profiling accuracy. In a specific case study we report results from two small-scale experiments, with 24 subjects over 3 months, and a large-scale experiment, with 260 subjects over an academic year, are conducted to evaluate different aspects of our approach. The overall performance of our ontological recommender systems are favourably compared to other systems in the literature.

Suggested Citation

  • Stuart E. Middleton & David De Roure & Nigel R. Shadbolt, 2009. "Ontology-Based Recommender Systems," International Handbooks on Information Systems, in: Steffen Staab & Rudi Studer (ed.), Handbook on Ontologies, pages 779-796, Springer.
  • Handle: RePEc:spr:ihichp:978-3-540-92673-3_35
    DOI: 10.1007/978-3-540-92673-3_35
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karamollah Bagherifard & Mohsen Rahmani & Vahid Rafe & Mehrbakhsh Nilashi, 2018. "A Recommendation Method Based on Semantic Similarity and Complementarity Using Weighted Taxonomy: A Case on Construction Materials Dataset," Journal of Information & Knowledge Management (JIKM), World Scientific Publishing Co. Pte. Ltd., vol. 17(01), pages 1-26, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ihichp:978-3-540-92673-3_35. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.