IDEAS home Printed from https://ideas.repec.org/h/spr/eurchp/978-3-030-53536-0_7.html
   My bibliography  Save this book chapter

Penalised Quantile Regression Analysis of the Land Price in Japan by Using GIS Data

In: Eurasian Economic Perspectives

Author

Listed:
  • Yuya Katafuchi

    (Kyushu University)

  • Augusto Ricardo Delgado Narro

    (Kyushu University)

Abstract

Land price analysis remains one of the active research fields where new methods, in order to quantify the effect of economic and noneconomic characteristics, continually push knowledge frontiers up. Nevertheless, so far, most of the research focus on measuring the causal effect to the mean value of land price by ordinary least squares (OLS) method, despite the possibility that covariates might affect the land price differently at each quantile, that is, causal effects might depend on the quantile of the land price distribution. Furthermore, most of the literature highlights the effect of a few accessibilities, building characteristics, and amenities over the land price by using limited survey data even though the development of geographic information systems (GIS) improves accessibility information to various facilities by positioning properties on the map in terms of their geographic coordinates and provides larger dataset. To identify the heterogeneous causal effects on the land price, the chapter applies the Quantile Regression (QR) method to the land prices function, using GIS data in Japan including micro-level characteristics in 2017. As the number of covariates is large, penalized QR method by regularization helps us to obtain more accurate results in variable selection. We find that QR with GIS data is crucial to obtain detailed relationships between micro-level covariates and land price since GIS data explains that non-macroeconomic variables cause the land price heterogeneously at each quantile. For example, the distance from a medical facility causes a negative effect on the land price; furthermore, this effect is magnified for upper quantiles.

Suggested Citation

  • Yuya Katafuchi & Augusto Ricardo Delgado Narro, 2020. "Penalised Quantile Regression Analysis of the Land Price in Japan by Using GIS Data," Eurasian Studies in Business and Economics, in: Mehmet Huseyin Bilgin & Hakan Danis & Ender Demir (ed.), Eurasian Economic Perspectives, pages 87-105, Springer.
  • Handle: RePEc:spr:eurchp:978-3-030-53536-0_7
    DOI: 10.1007/978-3-030-53536-0_7
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurchp:978-3-030-53536-0_7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.