IDEAS home Printed from https://ideas.repec.org/h/spr/eurchp/978-3-030-11833-4_21.html
   My bibliography  Save this book chapter

Evaluating Realized Volatility Models with Higher Order Cumulants: HAR-RV Versus ARIMA-RV

In: Eurasian Economic Perspectives

Author

Listed:
  • Sanja Dudukovic

    (Franklin University Switzerland)

Abstract

The objective of this paper is to introduce a new Realized Volatility (RV) Model. The model solves the problems of capturing long memory and heavy tales, which persist in current Heterogeneous Auto Regressive Realized Volatility Models (HAR-RV). First, an extensive empirical analysis of the classical RV model is provided by coupling Digital Signal Processing (DSP), Non Gaussian Time Series Analyses (NG-TSA) and volatility forecasting concepts. All models are built and tested on 30 min quotations of closing spot prices: USD/JPY, CHF/USD, JPY/EUR USD/GBP and GBP/EUR for the period from May 14, 2013 to July 31, 2015, taken from Bloomberg. The independence of the model’s innovations is tested by using the second, third and fourth cumulants, known as Higher Order Cumulants (HOC).Two tests are used, the Box-Ljung (B-Lj) test and Hinich test. The model is compared with the more natural Autoregressive Moving Average model (ARMA-RV). The empirical analysis shows that neither classic HAR-RV nor ARMA-RV models produce independent residuals. In addition, DSP recent findings are used to build a new HOC-ARMA-RV model. It was shown that only HOC-ARMA model fully captures fat tails and the long memory of FX returns.

Suggested Citation

  • Sanja Dudukovic, 2019. "Evaluating Realized Volatility Models with Higher Order Cumulants: HAR-RV Versus ARIMA-RV," Eurasian Studies in Business and Economics, in: Mehmet Huseyin Bilgin & Hakan Danis & Ender Demir & Ugur Can (ed.), Eurasian Economic Perspectives, pages 315-336, Springer.
  • Handle: RePEc:spr:eurchp:978-3-030-11833-4_21
    DOI: 10.1007/978-3-030-11833-4_21
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurchp:978-3-030-11833-4_21. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.