IDEAS home Printed from https://ideas.repec.org/h/spr/conchp/978-3-030-25275-5_11.html
   My bibliography  Save this book chapter

Forecasting the Prices of Cryptocurrencies Using GM(1,1) Rolling Model

In: Blockchain Economics and Financial Market Innovation

Author

Listed:
  • Cem Kartal

    (Zonguldak Bulent Ecevit University)

  • Mehmet Fatih Bayramoglu

    (Zonguldak Bulent Ecevit University)

Abstract

Although cryptocurrencies initially emerged as a transnational payment instrument, it has become an investment tool by attracting the attention of investors within the functioning of the capitalist system. In this chapter, the use of cryptocurrencies as an investment tool rather than in commercial transactions is discussed. As is known, most investors remain in a dilemma between the risk of risk aversion and the maximization of returns. Investors in this dilemma try to predict the future price or returns of the financial instruments through various analyzes and thus make an effort to give direction to their investments. These analyses are generally carried out by analyzing the past values of prices or returns by adopting a technical analysis approach. However, since the cryptocurrencies are a relatively new investment tool, it is not possible to reach the previous period price and yield information for an extended period. For this reason, the scope of the chapter is to explain the functioning of the cryptocurrencies as an investment tool in the market and to share information about the types of investors who have transferred their funds to cryptocurrencies by providing statistical information. Then, it is aimed to share the theoretical knowledge about GM(1,1) Rolling Model which has been proved by the literature in which it produces successful results especially in forecasting problems in uncertainty environment. Finally, the price forecasting of popular cryptocurrencies which are Bitcoin, Ethereum, Litecoin, and Ripple was made using the GM(1,1) Rolling Model, and it was tested whether this model is advisable for price forecasting of cryptocurrencies. Results of the Model show that the forecasting errors ranged from 1.35% to 7.76% for 10-days period. Also, direction forecasting results are between 40% and 50% in the same period. Also, returns of the bitcoin investment which made by trusting the results are ranged from −0.60% to −8.18. The results may be considered that the model was successful in forecasting the prices but unsuccessful in the direction forecasting. Even though the estimates are made with low percentages, the time series analyzes made with the lagged data of Bitcoin prices are not successful. Therefore, the technical analysis approach can be interpreted as not sufficient for modeling Bitcoin prices. So, these results show that defining bitcoin price movements is not only a forecasting problem but also a classification problem.

Suggested Citation

  • Cem Kartal & Mehmet Fatih Bayramoglu, 2019. "Forecasting the Prices of Cryptocurrencies Using GM(1,1) Rolling Model," Contributions to Economics, in: Umit Hacioglu (ed.), Blockchain Economics and Financial Market Innovation, chapter 0, pages 201-230, Springer.
  • Handle: RePEc:spr:conchp:978-3-030-25275-5_11
    DOI: 10.1007/978-3-030-25275-5_11
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:conchp:978-3-030-25275-5_11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.