Author
Abstract
Numerous authors have suggested that omitted variables affect spatial regression methods less than ordinary least-squares (OLS; Dubin 1988; Brasington and Hite 2005, Cressie 1993). To explore these conjectures, we derive an expression for OLS omitted variable bias in a univariate model with spatial dependence in the disturbances and explanatory variables. There are a number of motivations for making this set of assumptions regarding the disturbances and explanatory variables. First, in spatial regression models each observation represents a region or point located in space, for example, census tracts, counties or individual houses. Sample data used as explanatory variables in these models typically consists of socioeconomic, census and other characteristics of the regional or point locations associated with each observation. Therefore, spatial dependence in the explanatory variables seems likely, motivating our choice of this assumption. Note, the literature rarely examines the spatial character of the explanatory variables, but this can affect the relative performance of OLS as shown below. Second, application of OLS models to regional data samples frequently leads to spatial dependence in the regression disturbances, providing a justification for this assumption. Finally, there are a host of latent unobservable and frequently unmeasurable influences that are likely to impact spatial regression relationships. For example, factors such as location and other types of amenities, highway accessibility, school quality or neighborhood prestige may exert an influence on the dependent variable in hedonic house price models. It is unlikely that explanatory variables are readily available to capture all of these types of latent influences. This type of reasoning motivates our focus on the impact of omitted explanatory variables. Since the omitted and included explanatory variables are both likely to exhibit spatial dependence based on the same spatial connectivity structure, it seems likely that omitted and included variables will exhibit non-zero covariance. The expression we derive for OLS bias in these circumstances shows that positive dependence in the disturbances and explanatory variables when omitted variables are correlated with included explanatory variables magnifies the magnitude of conventional least-squares omitted variables bias.
Suggested Citation
R. Kelley Pace & James P. LeSage, 2010.
"Omitted Variable Biases of OLS and Spatial Lag Models,"
Advances in Spatial Science, in: Antonio Páez & Julie Gallo & Ron N. Buliung & Sandy Dall'erba (ed.), Progress in Spatial Analysis, pages 17-28,
Springer.
Handle:
RePEc:spr:adspcp:978-3-642-03326-1_2
DOI: 10.1007/978-3-642-03326-1_2
Download full text from publisher
To our knowledge, this item is not available for
download. To find whether it is available, there are three
options:
1. Check below whether another version of this item is available online.
2. Check on the provider's
web page
whether it is in fact available.
3. Perform a
search for a similarly titled item that would be
available.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:adspcp:978-3-642-03326-1_2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.