IDEAS home Printed from https://ideas.repec.org/h/spr/adspcp/978-3-319-99846-6_8.html
   My bibliography  Save this book chapter

Continuous Space Coverage

In: Location Covering Models

Author

Listed:
  • Richard L. Church

    (University of California)

  • Alan Murray

    (University of California)

Abstract

An important distinction in location analysis and modeling has long been discrete versus continuous approaches. In previous chapters, for the most part, the reviewed coverage problems have been discrete in the sense that the places at which a facility may be sited are known and finite in number, and the demand locations to be served are also known and finite. This has enabled discrete integer programming formulations of models to be developed, allowing for efficient and exact solution in many cases. In some circumstances, however, neither potential facility sites nor demand locations are necessarily known and finite. Thus, one aspect of a continuous space location model is that facilities may be sited anywhere. An example is depicted in Fig. 8.1 where all locations within the region are feasible. The implication is that there are an infinite number of potential facility locations to be considered, in contrast to an assumed finite set of potential locations in discrete approaches (see Chap. 2 ). Another aspect of a continuous space problem is that demand too is not limited to a finite set of locations. Rather, demand is assumed to be continuously distributed across geographic space, varying over a study area. One example of this is shown in Fig. 8.2, where the height of the surface reflects demand for service. As is evident in the figure, some level of demand can be observed everywhere and this varies across space. Another example is given in Fig. 8.3. The Census unit color reflects the amount of demand in each area. Within a unit the demand varies in some manner, but given limited knowledge, a small geographic area and relative homogeneity, it is often thought that demand is uniformly distributed in the unit. Thus, Fig. 8.3 reflects discontinuities in demand variability, but it remains varying across space. Irrespective of representation, the implication is that demand for service is everywhere, and in some cases can possibly be defined/described by a mathematical function. From a practical standpoint, the study area could be a demand region, collection of areal units, set of line segments, or any group of spatial objects. This clearly makes dealing with demand and its geographic variability particularly challenging, especially when compared to a discrete representation view based on points. This contrasting view can be observed in Fig. 8.4 as centroids for each Census unit are identified, and demand is assumed to occur at these precise points in traditional modeling approaches.

Suggested Citation

  • Richard L. Church & Alan Murray, 2018. "Continuous Space Coverage," Advances in Spatial Science, in: Location Covering Models, chapter 0, pages 177-201, Springer.
  • Handle: RePEc:spr:adspcp:978-3-319-99846-6_8
    DOI: 10.1007/978-3-319-99846-6_8
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:adspcp:978-3-319-99846-6_8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.