IDEAS home Printed from https://ideas.repec.org/h/spr/adspcp/978-3-319-99846-6_6.html
   My bibliography  Save this book chapter

Weighted Benefit, Variable Radius, and Gradual Coverage

In: Location Covering Models

Author

Listed:
  • Richard L. Church

    (University of California)

  • Alan Murray

    (University of California)

Abstract

The previous chapters have primarily focused on application contexts and modeling approaches where predefined, discrete coverage metrics are appropriate. Examples of this include: a fire department adequately serves/covers those properties that are within 5 min of travel from a station, or a surveillance system monitors/covers the areas that can be viewed by one or more cameras. That is, coverage is defined as being achieved or not, a simple binary yes or no property. The fact that coverage is defined as being provided or not to an area or object conceived of as a demand for service makes many coverage problems relatively simple to construct, especially for problems that are discrete in nature. When both demand objects and potential facility sites are discrete locations and finite in number, it is possible to identify which sites are capable of covering specific demand objects. An important question, however, is whether coverage should be so crisply defined. For example, when demand for service requires five and a half minutes to respond to from the closest fire station, it may not be considered covered according to a desired 5 min service time standard. In reality, demand for service along these lines obviously receives some level of degraded response service, but just not complete coverage characteristics associated with an established service standard. This chapter therefore explores how coverage models have been extended to be more flexible by including multiple levels of coverage, or steps of coverage, as well as defining a range where coverage is gradually degraded or lost. The idea that service/coverage is degraded, lost or not provided is itself of potential concern, and raises issues of equity. Essentially, in a public setting, we should be concerned with treating those demands that are not covered as fairly as possible. How do we identify a facility configuration (solution) that is as equitable as possible? This too is a subject of this chapter. Finally, there are cases when the coverage capabilities at a given location can be a function of investment. That is, we might be able to expand what a facility can cover by enhancing or upgrading associated equipment. For example, a viewshed (or coverage range) of a fire lookout tower might be extended by increasing its height. An emergency broadcast tower, as another example, might be outfitted with a superior transmitter providing a stronger signal, thereby increasing its range of reception. Such enhancements or upgrades likely are more costly, but do represent ways service capabilities may be altered. This chapter also addresses modeling where there may be options for increasing the coverage range of a facility along with making location siting decisions.

Suggested Citation

  • Richard L. Church & Alan Murray, 2018. "Weighted Benefit, Variable Radius, and Gradual Coverage," Advances in Spatial Science, in: Location Covering Models, chapter 0, pages 131-148, Springer.
  • Handle: RePEc:spr:adspcp:978-3-319-99846-6_6
    DOI: 10.1007/978-3-319-99846-6_6
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:adspcp:978-3-319-99846-6_6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.