IDEAS home Printed from https://ideas.repec.org/h/spr/adspcp/978-3-319-50590-9_15.html
   My bibliography  Save this book chapter

Modeling of Infectious Diseases: A Core Research Topic for the Next Hundred Years

In: Regional Research Frontiers - Vol. 2

Author

Listed:
  • I Gede Nyoman Mindra Jaya

    (Universitas Padjadjaran)

  • Henk Folmer

    (University of Groningen)

  • Budi Nurani Ruchjana

    (Universitas Padjadjaran)

  • Farah Kristiani

    (Parahyangan Catholic University)

  • Yudhie Andriyana

    (Universitas Padjadjaran)

Abstract

Incidence of infectious diseases is an under-researched topic in regional science. This situation is unfortunate because the occurrence of these types of diseases frequently has far-reaching welfare impacts at household, regional, national, and even international levels. Given its welfare impacts and soaring incidence, inter alia, because of climate change, increasing population density, higher mobility, and increasing immunity to several common medicines, the occurrence and spread of infectious diseases should become a regular research topic in regional science. There are also methodological reasons why regional scientists should pay (more) attention to the incidence of infectious diseases. Although both regional science and epidemiology deal with the spatial distributions of their research topics and apply spatial analytical techniques, important methodological differences between them open possibilities for cross-fertilization. This study presents an overview of the main models and estimators of infectious disease incidence. We first discuss maximum likelihood (ML), which is the most common estimator. It is unbiased but imprecise and unreliable for small regions. Next we discuss several methods that have been proposed to improve ML estimation by smoothing (i.e., Bayesian smoothing techniques and nonparametric estimators). From the review, we conclude that none of the models used so far adequately considers the most basic characteristic of infectious diseases, namely, spatial spillover. We argue that the development and application of infectious disease models that allow for spatial spillover is a core research topic for the years to come. We conclude the chapter with suggestions for future regional science research themes in the area of infectious diseases.

Suggested Citation

  • I Gede Nyoman Mindra Jaya & Henk Folmer & Budi Nurani Ruchjana & Farah Kristiani & Yudhie Andriyana, 2017. "Modeling of Infectious Diseases: A Core Research Topic for the Next Hundred Years," Advances in Spatial Science, in: Randall Jackson & Peter Schaeffer (ed.), Regional Research Frontiers - Vol. 2, chapter 0, pages 239-255, Springer.
  • Handle: RePEc:spr:adspcp:978-3-319-50590-9_15
    DOI: 10.1007/978-3-319-50590-9_15
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. I. Gede Nyoman M. Jaya & Henk Folmer, 2021. "Bayesian spatiotemporal forecasting and mapping of COVID‐19 risk with application to West Java Province, Indonesia," Journal of Regional Science, Wiley Blackwell, vol. 61(4), pages 849-881, September.
    2. Batabyal, Amitrajeet & Folmer, Henk, 2018. "Space and the Environment: An Introduction to the Special Issue," MPRA Paper 90526, University Library of Munich, Germany, revised 13 Dec 2018.
    3. Amitrajeet A. Batabyal & Henk Folmer, 2019. "Space and the environment: an introduction to the topical collection," Letters in Spatial and Resource Sciences, Springer, vol. 12(1), pages 1-7, April.
    4. I. Gede Nyoman Mindra Jaya & Henk Folmer, 2020. "Bayesian spatiotemporal mapping of relative dengue disease risk in Bandung, Indonesia," Journal of Geographical Systems, Springer, vol. 22(1), pages 105-142, January.
    5. I. Gede Nyoman Mindra Jaya & Henk Folmer, 2022. "Spatiotemporal high-resolution prediction and mapping: methodology and application to dengue disease," Journal of Geographical Systems, Springer, vol. 24(4), pages 527-581, October.
    6. Amitrajeet A. Batabyal & Henk Folmer, 2020. "Spatial economic aspects of climate change," Spatial Economic Analysis, Taylor & Francis Journals, vol. 15(3), pages 209-218, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:adspcp:978-3-319-50590-9_15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.