IDEAS home Printed from https://ideas.repec.org/h/spr/adschp/978-3-031-48385-1_24.html
   My bibliography  Save this book chapter

Public subsidies and innovation: a doubly robust machine learning approach leveraging deep neural networks

In: Advances in Applied Econometrics

Author

Listed:
  • Kerda Varaku

    (Rice University)

  • Robin C. Sickles

    (Rice University)

Abstract

Economic growth is crucial to improve standards of living, prosperity, and welfare. R &D and knowledge spillovers can offset the diminishing returns to physical capital (machines and labor) and drive long-run growth. Market imperfections can bring R &D below the socially desired level; thus, many governments intervene to increase the stock of knowledge, and knowledge spillovers, via subsidies for R &D. We use European firm-level data to explore the effects of public subsidies on firms’ R &D input and output. Average treatment effects are estimated by controlling for both observable and unobserved heterogeneity. Possible endogeneity in subsidy assignment is addressed, and the local instrumental variable (LIV) curve is identified via double machine learning methods. Results indicate that public subsidies increase both R &D intensity and output with more pronounced effects on the R &D intensity of high-technology and knowledge-intensive firms. The effects of public support remain positive and significant even after accounting for treatment endogeneity.

Suggested Citation

  • Kerda Varaku & Robin C. Sickles, 2024. "Public subsidies and innovation: a doubly robust machine learning approach leveraging deep neural networks," Advanced Studies in Theoretical and Applied Econometrics, in: Subal C. Kumbhakar & Robin C. Sickles & Hung-Jen Wang (ed.), Advances in Applied Econometrics, pages 665-709, Springer.
  • Handle: RePEc:spr:adschp:978-3-031-48385-1_24
    DOI: 10.1007/978-3-031-48385-1_24
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:adschp:978-3-031-48385-1_24. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.