IDEAS home Printed from https://ideas.repec.org/h/spr/adschp/978-3-031-48385-1_22.html
   My bibliography  Save this book chapter

Generalized kernel regularized least squares estimator with parametric error covariance

In: Advances in Applied Econometrics

Author

Listed:
  • Justin Dang

    (University of San Diego)

  • Aman Ullah

    (University of California)

Abstract

A two-step estimator of a nonparametric regression function via Kernel regularized least squares (KRLS) with parametric error covariance is proposed. The KRLS, not considering any information in the error covariance, is improved by incorporating a parametric error covariance, allowing for both heteroskedasticity and autocorrelation, in estimating the regression function. A two step procedure is used, where in the first step, a parametric error covariance is estimated by using KRLS residuals and in the second step, a transformed model using the error covariance is estimated by KRLS. Theoretical results including bias, variance, and asymptotics are derived. Simulation results show that the proposed estimator outperforms the KRLS in both heteroskedastic errors and autocorrelated errors cases. An empirical example is illustrated with estimating an airline cost function under a random effects model with heteroskedastic and correlated errors. The derivatives are evaluated, and the average partial effects of the inputs are determined in the application.

Suggested Citation

  • Justin Dang & Aman Ullah, 2024. "Generalized kernel regularized least squares estimator with parametric error covariance," Advanced Studies in Theoretical and Applied Econometrics, in: Subal C. Kumbhakar & Robin C. Sickles & Hung-Jen Wang (ed.), Advances in Applied Econometrics, pages 603-632, Springer.
  • Handle: RePEc:spr:adschp:978-3-031-48385-1_22
    DOI: 10.1007/978-3-031-48385-1_22
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:adschp:978-3-031-48385-1_22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.