IDEAS home Printed from https://ideas.repec.org/h/spr/adschp/978-3-031-48385-1_16.html
   My bibliography  Save this book chapter

Likelihood-based inference for dynamic panel data models

Author

Listed:
  • Seung C. Ahn

    (Arizona State University)

  • Gareth M. Thomas

    (S&P Global)

Abstract

This paper considers maximum likelihood (ML)-based inferences for dynamic panel data models. We focus on the analysis of the panel data with a large number (N) of cross-sectional units and a small number (T) of repeated time series observations for each cross-sectional unit. We examine several different ML estimators and their asymptotic and finite-sample properties. Our major finding is that when data follow unit-root processes without or with drifts, the ML estimators have singular information matrices. This is a case of Sargan (Econometrica 51:1605–1634, 1983) in which the first-order condition for identification fails, but parameters are identified. The ML estimators are consistent, but they have non-standard asymptotic distributions, and their convergence rates are lower than N1/2. In addition, the sizes of usual Wald statistics based on the estimators are distorted even asymptotically, and they reject the unit-root hypothesis too often. However, following Rotnitzky et al. (Bernoulli 6:243–284, 2000) we show that likelihood ratio (LR) tests for unit root follow mixtures of chi-square distributions. Our Monte Carlo experiments show that the LR tests with the p-values from the mixed distributions are much better sized than the Wald tests, although they tend to slightly over-reject the unit-root hypothesis in small samples. It is also shown that the LR tests for unit roots have good finite-sample power properties.

Suggested Citation

  • Seung C. Ahn & Gareth M. Thomas, 2024. "Likelihood-based inference for dynamic panel data models," Advanced Studies in Theoretical and Applied Econometrics,, Springer.
  • Handle: RePEc:spr:adschp:978-3-031-48385-1_16
    DOI: 10.1007/978-3-031-48385-1_16
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Keywords

    Dynamic panel data; Maximum likelihood; Singular information matrix;
    All these keywords.

    JEL classification:

    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C40 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:adschp:978-3-031-48385-1_16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.