IDEAS home Printed from https://ideas.repec.org/h/spr/adschp/978-3-031-48385-1_14.html
   My bibliography  Save this book chapter

The noise error component in stochastic frontier analysis

In: Advances in Applied Econometrics

Author

Listed:
  • Alecos Papadopoulos

    (Athens University of Economics and Business)

Abstract

With a little help from a handful of scholars, the noise component of the composed error in a production model created the stochastic frontier analysis field. But after that glorious moment, it was confined to obscurity. We review what little research has been done on it. We present two cases where it torments us from the shadows, by sabotaging identification, and by distorting the sample skewness. We examine the relation between predicted noise and predicted inefficiency. For the Normal-Half Normal and the Normal-Exponential error specification, we provide its conditional expectation as predictor and we examine its distribution in relation to the marginal law. We also derive the conditional distribution of the noise and we compute confidence intervals and the probability of over-predicting it. Finally, we present a model where the noise, as the carrier of uncertainty, induces directly inefficiency. We conclude by showcasing our theoretical results through an empirical illustration.

Suggested Citation

  • Alecos Papadopoulos, 2024. "The noise error component in stochastic frontier analysis," Advanced Studies in Theoretical and Applied Econometrics, in: Subal C. Kumbhakar & Robin C. Sickles & Hung-Jen Wang (ed.), Advances in Applied Econometrics, pages 333-367, Springer.
  • Handle: RePEc:spr:adschp:978-3-031-48385-1_14
    DOI: 10.1007/978-3-031-48385-1_14
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Keywords

    Noise; Stochastic frontier; Identification; Wrong skewness; Dependence;
    All these keywords.

    JEL classification:

    • C46 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Specific Distributions
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:adschp:978-3-031-48385-1_14. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.