IDEAS home Printed from https://ideas.repec.org/h/spr/adschp/978-3-031-15149-1_6.html
   My bibliography  Save this book chapter

Econometrics of Networks with Machine Learning

In: Econometrics with Machine Learning

Author

Listed:
  • Oliver Kiss

    (Central European University)

  • Gyorgy Ruzicska

    (Central European University)

Abstract

Graph structured data, called networks, can represent many economic activities and phenomena. Such representations are not only powerful for developing economic theory but are also helpful in examining their applications in empirical analyses. This has been particularly the case recently as data associated with networks are often readily available. While researchers may have access to real-world network structured data, in many cases, their volume and complexities make analysis using traditional econometric methodology prohibitive. One plausible solution is to embed recent advancements in computer science, especially machine learning algorithms, into the existing econometric methodology that incorporates large networks. This chapter aims to cover a range of examples where existing algorithms in the computer science literature, machine learning tools, and econometric practices can complement each other. The first part of the chapter provides an overview of the challenges associated with high-dimensional, complex network data. It discusses ways to overcome them by using algorithms developed in computer science and econometrics. The second part of this chapter shows the usefulness of some machine learning algorithms in complementing traditional econometric techniques by providing empirical applications in spatial econometrics.

Suggested Citation

  • Oliver Kiss & Gyorgy Ruzicska, 2022. "Econometrics of Networks with Machine Learning," Advanced Studies in Theoretical and Applied Econometrics, in: Felix Chan & László Mátyás (ed.), Econometrics with Machine Learning, chapter 0, pages 177-215, Springer.
  • Handle: RePEc:spr:adschp:978-3-031-15149-1_6
    DOI: 10.1007/978-3-031-15149-1_6
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:adschp:978-3-031-15149-1_6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.