IDEAS home Printed from https://ideas.repec.org/h/pal/palchp/978-0-230-62515-0_5.html
   My bibliography  Save this book chapter

‘Homo economicus’ as an intuitive statistician (2): Bayesian diagnostic learning

In: Rationality, bounded rationality and microfoundations

Author

Listed:
  • Reza Salehnejad

Abstract

The bounded rationality programme views the economy as a society of intuitive statisticians. The key for the success of this programme is the existence of a ‘tight enough’ theory of statistical inference. We have so far shown that there is no entirely data-driven algorithm that receives a finite sample of data and yields the model that best approximates the process generating the data. Learning an interpretable model of a choice situation requires starting with a parametric probability model. To analyse the programme further, we now examine the possibility of a ‘tight enough’ theory of learning within the general framework of the Bayesian theory, which is primarily a theory of parametric inference.

Suggested Citation

  • Reza Salehnejad, 2007. "‘Homo economicus’ as an intuitive statistician (2): Bayesian diagnostic learning," Palgrave Macmillan Books, in: Rationality, bounded rationality and microfoundations, chapter 4, pages 106-164, Palgrave Macmillan.
  • Handle: RePEc:pal:palchp:978-0-230-62515-0_5
    DOI: 10.1057/9780230625150_5
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:palchp:978-0-230-62515-0_5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.