IDEAS home Printed from https://ideas.repec.org/h/pal/palchp/978-0-230-29734-0_4.html
   My bibliography  Save this book chapter

Marketing Mix Modelling and Return on Investment

In: Integrated Brand Marketing and Measuring Returns

Author

Listed:
  • Peter M. Cain

Abstract

The marketing mix model is a widely used tool to evaluate Return on Investment (ROI) and inform optimal allocation of the marketing budget. Economics and econometrics lie at the heart of the process. In the first place, the model structure is derived from microeconomic theories of consumer demand ranging from single equations of product sales to full interactive systems of brand choice. Secondly, econometric techniques are used to estimate demand response to marketing investments, separating product sales into base and incremental volume. Base sales represent the long-run or trend component of the product time series, driven by factors ranging from regular shelf price and selling distribution to underlying consumer brand preferences. Incremental volume, on the other hand, is essentially short-run in nature, capturing the week-to-week sales variation driven by temporary selling price, multi-buy promotions and above the line media activity. These are converted into incremental revenues or profits and benchmarked against costs to calculate ROI to each element of the marketing mix.

Suggested Citation

  • Peter M. Cain, 2010. "Marketing Mix Modelling and Return on Investment," Palgrave Macmillan Books, in: Philip J. Kitchen (ed.), Integrated Brand Marketing and Measuring Returns, chapter 4, pages 94-130, Palgrave Macmillan.
  • Handle: RePEc:pal:palchp:978-0-230-29734-0_4
    DOI: 10.1057/9780230297340_4
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cain, P.M., 2022. "Modelling short-and long-term marketing effects in the consumer purchase journey," International Journal of Research in Marketing, Elsevier, vol. 39(1), pages 96-116.
    2. Kaifeng Zhao & Seyed Hanif Mahboobi & Saeed Bagheri, 2017. "Revenue-based Attribution Modeling for Online Advertising," Papers 1710.06561, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:palchp:978-0-230-29734-0_4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.