IDEAS home Printed from https://ideas.repec.org/h/ito/pchaps/268374.html
   My bibliography  Save this book chapter

Self-Powering Wireless Sensor Networks in the Oil and Gas Industry

In: Nanogenerators and Self-Powered Systems

Author

Listed:
  • Musaab Zarog

Abstract

The total revenue from the oil and gas industry in 2019 was 3 trillion dollars with nearly 350,000 businesses working in this field. For more efficiency, all machinery and equipment, including thousands of kilometers of transporting pipelines, need to be monitored continuously and in real time. Hundreds or even thousands of sensing and control nodes are needed for the oil and gas industry. WSNs approach has allowed the company to reduce the number of antenna towers and masts at remote sites, which accounts for 40-60% of the infrastructure cost of building a wireless digital oilfield network. A conventional solution to power these nodes is the use of electrochemical batteries. However, problems can occur using batteries due to their finite lifespan. The need for constant replacement in remote locations can become a very expensive or even impossible task. Over the last years, ambient energy harvesters have received great attention, including vibration-to-electric energy conversion. The aim of this chapter is to present the usefulness of implementing IoT and self-powered WSNs in the oil and gas sector, as well as challenges and issues related to adopting such a system.

Suggested Citation

  • Musaab Zarog, 2023. "Self-Powering Wireless Sensor Networks in the Oil and Gas Industry," Chapters, in: Bhaskar Dudem & Vivekananthan Venkateswaran & Arunkumar Chandrasekhar (ed.), Nanogenerators and Self-Powered Systems, IntechOpen.
  • Handle: RePEc:ito:pchaps:268374
    DOI: 10.5772/intechopen.107919
    as

    Download full text from publisher

    File URL: https://www.intechopen.com/chapters/84086
    Download Restriction: no

    File URL: https://libkey.io/10.5772/intechopen.107919?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Keywords

    energy scavenging; wireless networks; sensors; MEMS; mechanical vibration; microsystems; ambient energy;
    All these keywords.

    JEL classification:

    • Q20 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - General
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ito:pchaps:268374. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Slobodan Momcilovic (email available below). General contact details of provider: http://www.intechopen.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.