IDEAS home Printed from https://ideas.repec.org/h/ito/pchaps/259095.html
   My bibliography  Save this book chapter

Energy Efficiency Improvement in Surface Mining

In: Latest Research on Energy Recovery

Author

Listed:
  • Ali Soofastaei
  • Milad Fouladgar

Abstract

This chapter aims to provide an overview of energy efficiency in the mining industry with a particular focus on the role of fuel consumption in hauling operations in mining. Moreover, as the most costly aspect of surface mining with a significant environmental impact, diesel consumption will be investigated in this chapter. This research seeks to develop an advanced data analytics model to estimate the energy efficiency of haul trucks used in surface mines, with the ultimate goal of lowering operating costs. Predicting truck fuel consumption can be accomplished by first identifying the significant factors affecting fuel consumption: total resistance, truck payload, and truck speed. Second, developing a comprehensive analysis framework. This framework involves generating a fitness function from a model of the relationship between fuel consumption and its affecting factors. Third, the model is trained and tested using actual data from large surface mines in Australia, obtained through field research. Finally, an artificial neural network is selected to predict haul truck fuel consumption. The visualized results also clarify the general minimum areas in the plotted fuel consumption graphs. These areas potentially open a new window for researchers to develop optimization models to minimize haul truck fuel consumption in surface mines.

Suggested Citation

  • Ali Soofastaei & Milad Fouladgar, 2023. "Energy Efficiency Improvement in Surface Mining," Chapters, in: Petrica Vizureanu (ed.), Latest Research on Energy Recovery, IntechOpen.
  • Handle: RePEc:ito:pchaps:259095
    DOI: 10.5772/intechopen.104262
    as

    Download full text from publisher

    File URL: https://www.intechopen.com/chapters/81374
    Download Restriction: no

    File URL: https://libkey.io/10.5772/intechopen.104262?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Keywords

    energy efficiency; fuel consumption; surface mining; artificial intelligence; prediction;
    All these keywords.

    JEL classification:

    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ito:pchaps:259095. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Slobodan Momcilovic (email available below). General contact details of provider: http://www.intechopen.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.