IDEAS home Printed from https://ideas.repec.org/h/ito/pchaps/257186.html
   My bibliography  Save this book chapter

Principal Component Analysis in Financial Data Science

In: Advances in Principal Component Analysis

Author

Listed:
  • Stefana Janicijevic
  • Vule Mizdrakovic
  • Maja Kljajic

Abstract

Numerous methods exist aimed at examining patterns in structured and unstructured financial data. Applications of these methods include fraud detection, risk management, credit allocation, assessment of the risk of default, customer analytics, trading prediction, and many others, creating a broad field of research named Financial data science. A problem within the field that remains significantly under-researched, yet very important, is that of differentiating between the three major types of business activities--merchandising, manufacturing, and service based on the structured data available in financial reports. It can be argued that, due to the inherent idiosyncrasies of the three types of business activities, methods for assessment of the risk of default, methods for credit allocation, and methods for fraud detection would all see an improved performance if reliable information on the percentage of entities' business activities allocated to the three major activities would be available. To this end, in this paper, we propose a clustering procedure that relies on Principal Component Analysis (PCA) for dimensionality reduction and feature selection. The procedure is presented using a large empirical data set comprising complete financial reports for various business entities operating in the Republic in Serbia, that pertain to the reporting period 2019.

Suggested Citation

  • Stefana Janicijevic & Vule Mizdrakovic & Maja Kljajic, 2022. "Principal Component Analysis in Financial Data Science," Chapters, in: Fausto Pedro Garcia Marquez (ed.), Advances in Principal Component Analysis, IntechOpen.
  • Handle: RePEc:ito:pchaps:257186
    DOI: 10.5772/intechopen.102928
    as

    Download full text from publisher

    File URL: https://www.intechopen.com/chapters/80983
    Download Restriction: no

    File URL: https://libkey.io/10.5772/intechopen.102928?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Keywords

    data science; principal component analysis; random forest algorithm; financial data; financial reporting;
    All these keywords.

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ito:pchaps:257186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Slobodan Momcilovic (email available below). General contact details of provider: http://www.intechopen.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.