IDEAS home Printed from https://ideas.repec.org/h/ito/pchaps/242036.html
   My bibliography  Save this book chapter

The Paradigm of Complex Probability and Thomas Bayes' Theorem

In: The Monte Carlo Methods - Recent Advances, New Perspectives and Applications

Author

Listed:
  • Abdo Abou Jaoude

Abstract

The mathematical probability concept was set forth by Andrey Nikolaevich Kolmogorov in 1933 by laying down a five-axioms system. This scheme can be improved to embody the set of imaginary numbers after adding three new axioms. Accordingly, any stochastic phenomenon can be performed in the set C of complex probabilities which is the summation of the set R of real probabilities and the set M of imaginary probabilities. Our objective now is to encompass complementary imaginary dimensions to the stochastic phenomenon taking place in the "real" laboratory in R and as a consequence to gauge in the sets R, M, and C all the corresponding probabilities. Hence, the probability in the entire set C = R + M is incessantly equal to one independently of all the probabilities of the input stochastic variable distribution in R, and subsequently the output of the random phenomenon in R can be evaluated totally in C. This is due to the fact that the probability in C is calculated after the elimination and subtraction of the chaotic factor from the degree of our knowledge of the nondeterministic phenomenon. We will apply this novel paradigm to the classical Bayes' theorem in probability theory.

Suggested Citation

  • Abdo Abou Jaoude, 2022. "The Paradigm of Complex Probability and Thomas Bayes' Theorem," Chapters, in: Abdo Abou Jaoude (ed.), The Monte Carlo Methods - Recent Advances, New Perspectives and Applications, IntechOpen.
  • Handle: RePEc:ito:pchaps:242036
    DOI: 10.5772/intechopen.98340
    as

    Download full text from publisher

    File URL: https://www.intechopen.com/chapters/77258
    Download Restriction: no

    File URL: https://libkey.io/10.5772/intechopen.98340?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Keywords

    Chaotic factor; degree of our knowledge; complex random vector; imaginary probability; probability norm; complex probability set;
    All these keywords.

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ito:pchaps:242036. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Slobodan Momcilovic (email available below). General contact details of provider: http://www.intechopen.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.