IDEAS home Printed from https://ideas.repec.org/h/ito/pchaps/215842.html
   My bibliography  Save this book chapter

Two-Dimensional Materials for Advanced Solar Cells

In: Solar Cells - Theory, Materials and Recent Advances

Author

Listed:
  • Manoj Kumar Singh
  • Pratik V. Shinde
  • Pratap Singh
  • Pawan Kumar Tyagi

Abstract

Inorganic crystalline silicon solar cells account for more than 90% of the market despite a recent surge in research efforts to develop new architectures and materials such as organics and perovskites. The reason why most commercial solar cells are using crystalline silicon as the absorber layer include long-term stability, the abundance of silicone, relatively low manufacturing costs, ability for doping by other elements, and native oxide passivation layer. However, the indirect band gap nature of crystalline silicon makes it a poor light emitter, limiting its solar conversion efficiency. For instance, compared to the extraordinary high light absorption coefficient of perovskites, silicon requires 1000 times more material to absorb the same amount of sunlight. In order to reduce the cost per watt and improve watt per gram utilization of future generations of solar cells, reducing the active absorber thickness is a key design requirement. This is where novel two-dimensional (2d) materials like graphene, MoS2 come into play because they could lead to thinner, lightweight and flexible solar cells. In this chapter, we aim to follow up on the most important and novel developments that have been recently reported on solar cells. Section-2 is devoted to the properties, synthesis techniques of different 2d materials like graphene, TMDs, and perovskites. In the next section-3, various types of photovoltaic cells, 2d Schottky, 2d homojunction, and 2d heterojunction have been described. Systematic development to enhance the PCE with recent techniques has been discussed in section-4. Also, 2d Ruddlesden-Popper perovskite explained briefly. New developments in the field of the solar cell via upconversion and downconversion processes are illustrated and described in section-5. The next section is dedicated to the recent developments and challenges in the fabrication of 2d photovoltaic cells, additionally with various applications. Finally, we will also address future directions yet to be explored for enhancing the performance of solar cells.

Suggested Citation

  • Manoj Kumar Singh & Pratik V. Shinde & Pratap Singh & Pawan Kumar Tyagi, 2021. "Two-Dimensional Materials for Advanced Solar Cells," Chapters, in: Ahmed Mourtada Elseman (ed.), Solar Cells - Theory, Materials and Recent Advances, IntechOpen.
  • Handle: RePEc:ito:pchaps:215842
    DOI: 10.5772/intechopen.94114
    as

    Download full text from publisher

    File URL: https://www.intechopen.com/chapters/73620
    Download Restriction: no

    File URL: https://libkey.io/10.5772/intechopen.94114?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Keywords

    2D materials; graphene; MoS2; advanced solar cells; perovskites;
    All these keywords.

    JEL classification:

    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ito:pchaps:215842. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Slobodan Momcilovic (email available below). General contact details of provider: http://www.intechopen.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.