IDEAS home Printed from https://ideas.repec.org/h/ito/pchaps/211021.html
   My bibliography  Save this book chapter

Water Desalination Using PCM to Store Solar Energy

In: Thermodynamics and Energy Engineering

Author

Listed:
  • Paritosh C. Kulkarni

Abstract

The rising water pollution levels and depleting freshwater sources have formed a delirious inverse proportionality for which the cause is human and effect is also on humanity. A possible solution to this problem is harnessing solar energy to engender thermal energy for solar distillation. Thus solar distillation is one of the potential solutions to asses both the ever-increasing demands for clean water and the inquisition for finding eco-friendly techniques to yield the water. This analysis was undertaken to discover the possible utilization of phase change material on solar distillation in double-slope solar still. The equipment that performs distillation is called "Solar Still." A phase change material (PCM) is a substance that either releases or absorbs energy comparable to the sensible heat during its phase transition to provide useful heat/cooling. Examples of PCM include phenol, paraffin, salt hydrate, and fatty acid. The experiment includes a blank distillate output without PCM, followed by possible optimization on the designed solar still. Solar distillation was performed in the improved solar still with varying types of PCMs. A theoretical model discerning the above phenomena and experiments were performed on the solar still. It was reported that for the yield maximum of water distillate with PCM (Phenol--5 cm) is 370 mL and without PCM is 345 mL, showing a 7.2% increase.

Suggested Citation

  • Paritosh C. Kulkarni, 2020. "Water Desalination Using PCM to Store Solar Energy," Chapters, in: Petrica Vizureanu (ed.), Thermodynamics and Energy Engineering, IntechOpen.
  • Handle: RePEc:ito:pchaps:211021
    DOI: 10.5772/intechopen.92597
    as

    Download full text from publisher

    File URL: https://www.intechopen.com/chapters/72245
    Download Restriction: no

    File URL: https://libkey.io/10.5772/intechopen.92597?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Keywords

    solar still; phase change material; phenol; sustainability; water-desalination; renewable energy;
    All these keywords.

    JEL classification:

    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ito:pchaps:211021. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Slobodan Momcilovic (email available below). General contact details of provider: http://www.intechopen.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.