IDEAS home Printed from https://ideas.repec.org/h/ito/pchaps/209734.html
   My bibliography  Save this book chapter

Fast-Spectrum Fluoride Molten Salt Reactor (FFMSR) with Ultimately Reduced Radiotoxicity of Nuclear Wastes

In: Nuclear Power Plants - The Processes from the Cradle to the Grave

Author

Listed:
  • Yasuo Hirose

Abstract

A mixture of NaF-KF-UF4 eutectic and NaF-KF-TRUF3 eutectic containing heavy elements as much as 2.8 g/cc makes a fast-spectrum molten salt reactor based upon the U-Pu cycle available without a blanket. It does not object breeding but a stable operation without fissile makeup under practical contingencies. It is highly integrated with online dry chemical processes based on "selective oxide precipitation" to create a U-Pu cycle to provide as low as 0.01% leakage of TRU and nominated as the FFMSR. This certifies that the radiotoxicity of HLW for 1500 effective full power days (EFPD) operation can be equivalent to 405 tons of depleted uranium after 500 years cooling without Partition and Transmutation (P&T). A certain amount of U-TRU mixture recovered from LWR spent fuel is loaded after the initial criticality until U-Pu equilibrium but the fixed amount of 238U only thereafter. The TRU inventory in an FFMSR stays at an equilibrium perpetually. Accumulation of spent fuel of an LWR for 55 years should afford to start up the identical thermal capacity of FFMSR and to keep operation hypothetically until running out of 238U. Full deployment of the FFMSR should make the entire fuel cycle infrastructures needless except the HLW disposal site.

Suggested Citation

  • Yasuo Hirose, 2021. "Fast-Spectrum Fluoride Molten Salt Reactor (FFMSR) with Ultimately Reduced Radiotoxicity of Nuclear Wastes," Chapters, in: Nasser Sayed Awwad (ed.), Nuclear Power Plants - The Processes from the Cradle to the Grave, IntechOpen.
  • Handle: RePEc:ito:pchaps:209734
    DOI: 10.5772/intechopen.90939
    as

    Download full text from publisher

    File URL: https://www.intechopen.com/chapters/71264
    Download Restriction: no

    File URL: https://libkey.io/10.5772/intechopen.90939?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ito:pchaps:209734. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Slobodan Momcilovic (email available below). General contact details of provider: http://www.intechopen.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.