IDEAS home Printed from https://ideas.repec.org/h/ito/pchaps/171858.html
   My bibliography  Save this book chapter

Oscillator Dampers in Civil Structures

In: Oscillators - Recent Developments

Author

Listed:
  • Yonggang Tan

Abstract

Many kinds of oscillators, springs, and damping system compose vibration reduction system in civil structures. Since the invention of the tuned mass damper (TMD) device a century ago, it has become a very important technology in structural control. TMDs can effectively suppress the response of civil structures under harmonic or wind excitations. To improve the damping capacity of TMDs in reducing the vibration of structures under seismic loads, a large mass ratio should be used, but TMDs are still ineffective in suppressing the seismic peak response of high-rise buildings. The inerter-based dynamic vibration absorbers (IDVA), including tuned inerter dampers (TID) and tuned mass-damper-inerter (TMDI), have been investigated in recent years. The advantage of using a TID and TMDI comes from the adoption of gearing in the inerter, which equivalently amplifies the mass. The mass ratio of an inerter is very high; hence, its mechanical properties and reliability are vital. A novel damper device, accelerated oscillator damper (AOD), has been proposed recently. Gear transmission systems are used to generate an amplified kinetic energy of the oscillator to reduce the oscillations of the structures. The AOD system is superior to the traditional TMD system in short time loading intervals or under the maximum seismic loads.

Suggested Citation

  • Yonggang Tan, 2019. "Oscillator Dampers in Civil Structures," Chapters, in: Patrice Salzenstein (ed.), Oscillators - Recent Developments, IntechOpen.
  • Handle: RePEc:ito:pchaps:171858
    DOI: 10.5772/intechopen.81904
    as

    Download full text from publisher

    File URL: https://www.intechopen.com/chapters/64277
    Download Restriction: no

    File URL: https://libkey.io/10.5772/intechopen.81904?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Keywords

    TMD; AOD; accelerated oscillator damper; inerter-based dynamic vibration absorber; tuned inerter damper; tuned mass-damper-inerter;
    All these keywords.

    JEL classification:

    • C60 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ito:pchaps:171858. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Slobodan Momcilovic (email available below). General contact details of provider: http://www.intechopen.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.