IDEAS home Printed from https://ideas.repec.org/h/ito/pchaps/169300.html
   My bibliography  Save this book chapter

Quantum Harmonic Oscillator

In: Oscillators - Recent Developments

Author

Listed:
  • Coskun Deniz

Abstract

Quantum harmonic oscillator (QHO) involves square law potential (x2) in the Schrodinger equation and is a fundamental problem in quantum mechanics. It can be solved by various conventional methods such as (i) analytical methods where Hermite polynomials are involved, (ii) algebraic methods where ladder operators are involved, and (iii) approximation methods where perturbation, variational, semiclassical, etc. techniques are involved. Here we present the general outcomes of the two conventional semiclassical approximation methods: the JWKB method (named after Jeffreys, Wentzel, Kramers, and Brillouin) and the MAF method (abbreviated for "modified Airy functions") to solve the QHO in a very good precision. Although JWKB is an approximation method, it interestingly gives the exact solution for the QHO except for the classical turning points (CTPs) where it diverges as typical to the JWKB. As the MAF method, it enables very approximate wave functions to be written in terms of Airy functions without any discontinuity in the entire domain, though, it needs careful treatment since Airy functions exhibit too much oscillatory behavior. Here, we make use of the parity conditions of the QHO to find the exact JWKB and approximate MAF solutions of the QHO within the capability of these methods.

Suggested Citation

  • Coskun Deniz, 2019. "Quantum Harmonic Oscillator," Chapters, in: Patrice Salzenstein (ed.), Oscillators - Recent Developments, IntechOpen.
  • Handle: RePEc:ito:pchaps:169300
    DOI: 10.5772/intechopen.85147
    as

    Download full text from publisher

    File URL: https://www.intechopen.com/chapters/66311
    Download Restriction: no

    File URL: https://libkey.io/10.5772/intechopen.85147?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Keywords

    Schrodinger equation; quantum mechanics; JWKB; MAF;
    All these keywords.

    JEL classification:

    • C60 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ito:pchaps:169300. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Slobodan Momcilovic (email available below). General contact details of provider: http://www.intechopen.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.