IDEAS home Printed from https://ideas.repec.org/h/ito/pchaps/167850.html
   My bibliography  Save this book chapter

Forecasting Shrimp and Fish Catch in Chilika Lake over Time Series Analysis

In: Time Series Analysis - Data, Methods, and Applications

Author

Listed:
  • Rohan Raman
  • Basanta Das

Abstract

Chilika lagoon (a Ramsar site) is a large source of fish production and biodiversity situated in the east coast of India, Odisha. Shrimp landings contribute an average of 4185 MT (Metric Ton) around 35% of total fish production. In this study, SARIMA (Seasonal Auto Regressive Integrated Moving Average) model has been developed on quarterly time series shrimp catch data during the year 2001-2015 and forecasted up to 2018. The best model was selected on Akaike Information Criteria (AIC) and Bayesian Information Criterion (SBC). Results showed that maximum average shrimp landings were observed in the first quarter period (summer season), whereas maximum variation in catch was observed during second quarter Q2 (monsoon season) and lowest variation in the fourth quarter Q4 (winter season) catch during the year 2001-2015. The developed time series SARIMA (0,1,1)(0,1,1)4 model was found to be the best fitted model for the shrimp landings in the lagoon. This article also delineates the application of SARIMAX model (SARIMA with regressors) using monthly catch prediction of fisheries in the Chilika Lake. The developed model is validated with less than 10% errors showing increasing fish catch in the upcoming years by maintaining the present lake condition.

Suggested Citation

  • Rohan Raman & Basanta Das, 2019. "Forecasting Shrimp and Fish Catch in Chilika Lake over Time Series Analysis," Chapters, in: Chun-Kit Ngan (ed.), Time Series Analysis - Data, Methods, and Applications, IntechOpen.
  • Handle: RePEc:ito:pchaps:167850
    DOI: 10.5772/intechopen.85458
    as

    Download full text from publisher

    File URL: https://www.intechopen.com/chapters/66426
    Download Restriction: no

    File URL: https://libkey.io/10.5772/intechopen.85458?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Keywords

    Chilika; shrimp; fisheries; time series; forecasting;
    All these keywords.

    JEL classification:

    • C60 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ito:pchaps:167850. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Slobodan Momcilovic (email available below). General contact details of provider: http://www.intechopen.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.