IDEAS home Printed from https://ideas.repec.org/h/ito/pchaps/165997.html
   My bibliography  Save this book chapter

Process Fault Diagnosis for Continuous Dynamic Systems Over Multivariate Time Series

In: Time Series Analysis - Data, Methods, and Applications

Author

Listed:
  • Chris Aldrich

Abstract

Fault diagnosis in continuous dynamic systems can be challenging, since the variables in these systems are typically characterized by autocorrelation, as well as time variant parameters, such as mean vectors, covariance matrices, and higher order statistics, which are not handled well by methods designed for steady state systems. In dynamic systems, steady state approaches are extended to deal with these problems, essentially through feature extraction designed to capture the process dynamics from the time series. In this chapter, recent advances in feature extraction from signals or multivariate time series are reviewed. These methods can subsequently be considered in a classical statistical monitoring framework, such as used for steady state systems. In addition, an extension of nonlinear signal processing based on the use of unthresholded or global recurrence quantification analysis is discussed, where two multivariate image methods based on gray level co-occurrence matrices and local binary patterns are used to extract features from time series. When considering the well-known simulated Tennessee Eastman process in chemical engineering, it is shown that time series features obtained with this approach can be an effective means of discriminating between different fault conditions in the system. The approach provides a general framework that can be extended in multiple ways to time series analysis.

Suggested Citation

  • Chris Aldrich, 2019. "Process Fault Diagnosis for Continuous Dynamic Systems Over Multivariate Time Series," Chapters, in: Chun-Kit Ngan (ed.), Time Series Analysis - Data, Methods, and Applications, IntechOpen.
  • Handle: RePEc:ito:pchaps:165997
    DOI: 10.5772/intechopen.85456
    as

    Download full text from publisher

    File URL: https://www.intechopen.com/chapters/66836
    Download Restriction: no

    File URL: https://libkey.io/10.5772/intechopen.85456?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Keywords

    process fault diagnosis; statistical process control; machine learning; time series analysis; deep learning;
    All these keywords.

    JEL classification:

    • C60 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ito:pchaps:165997. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Slobodan Momcilovic (email available below). General contact details of provider: http://www.intechopen.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.