IDEAS home Printed from https://ideas.repec.org/h/ito/pchaps/161970.html
   My bibliography  Save this book chapter

CNN Approaches for Time Series Classification

In: Time Series Analysis - Data, Methods, and Applications

Author

Listed:
  • Lamyaa Sadouk

Abstract

Time series classification is an important field in time series data-mining which have covered broad applications so far. Although it has attracted great interests during last decades, it remains a challenging task and falls short of efficiency due to the nature of its data: high dimensionality, large in data size and updating continuously. With the advent of deep learning, new methods have been developed, especially Convolutional Neural Network (CNN) models. In this paper, we present a review of our time series CNN approaches including: (i) a data-level approach based on encoding time series into frequency-domain signals via the Stockwell transform, (ii) an algorithm-level approach based on an adaptive convolutional layer filter that suits the time series in hand, and (iii) another algorithm-level approach adapted to time series classification tasks with limited annotated data, which is a global, fast and light-weight framework based on a transfer learning technique with a source learning task similar or different but related to the target learning task. These approaches are implemented on identifying human activities including normal movements of typical subjects and disorder-related movements such as stereotypical motor movements of autistic subjects. Experimental results show that our approaches improve performance of time series classification.

Suggested Citation

  • Lamyaa Sadouk, 2019. "CNN Approaches for Time Series Classification," Chapters, in: Chun-Kit Ngan (ed.), Time Series Analysis - Data, Methods, and Applications, IntechOpen.
  • Handle: RePEc:ito:pchaps:161970
    DOI: 10.5772/intechopen.81170
    as

    Download full text from publisher

    File URL: https://www.intechopen.com/chapters/64216
    Download Restriction: no

    File URL: https://libkey.io/10.5772/intechopen.81170?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Keywords

    time series; classification; convolutional neural networks; transfer learning;
    All these keywords.

    JEL classification:

    • C60 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ito:pchaps:161970. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Slobodan Momcilovic (email available below). General contact details of provider: http://www.intechopen.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.