IDEAS home Printed from https://ideas.repec.org/h/ito/pchaps/160979.html
   My bibliography  Save this book chapter

Preventive Maintenance and Fault Detection for Wind Turbine Generators Using a Statistical Model

In: Fault Detection and Diagnosis

Author

Listed:
  • Marco Adonis
  • Atanda Kamoru Raji
  • Ian Kuiler

Abstract

Vigilant fault diagnosis and preventive maintenance has the potential to significantly decrease costs associated with wind generators. As wind energy continues the upward growth in technology and continued worldwide adoption and implementation, the application of fault diagnosis techniques will become more imperative. Fault diagnosis and preventive maintenance techniques for wind turbine generators are still at an early stage compared to matured strategies used for generators in conventional power plants. The cost of wind energy can be further reduced if failures are predicted in advance of a major structural failure, which leads to less unplanned maintenance. High maintenance cost of wind turbines means that predictive strategies like fault diagnosis and preventive maintenance techniques are necessary to manage life cycle costs of critical components. Squirrel-Cage Induction Generators (SCIG) are the prevailing generator type and are more robust and cheaper to manufacturer compared to other generator types used in wind turbines. A statistical model was developed using SCADA data to estimate the relationships between winding temperatures and other variables. Predicting faults in stator windings are challenging because the unhealthy condition rapidly evolves into a functional failure.

Suggested Citation

  • Marco Adonis & Atanda Kamoru Raji & Ian Kuiler, 2018. "Preventive Maintenance and Fault Detection for Wind Turbine Generators Using a Statistical Model," Chapters, in: Constantin Volosencu (ed.), Fault Detection and Diagnosis, IntechOpen.
  • Handle: RePEc:ito:pchaps:160979
    DOI: 10.5772/intechopen.80071
    as

    Download full text from publisher

    File URL: https://www.intechopen.com/chapters/62967
    Download Restriction: no

    File URL: https://libkey.io/10.5772/intechopen.80071?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. McKenna, Russell & Pfenninger, Stefan & Heinrichs, Heidi & Schmidt, Johannes & Staffell, Iain & Bauer, Christian & Gruber, Katharina & Hahmann, Andrea N. & Jansen, Malte & Klingler, Michael & Landwehr, 2022. "High-resolution large-scale onshore wind energy assessments: A review of potential definitions, methodologies and future research needs," Renewable Energy, Elsevier, vol. 182(C), pages 659-684.

    More about this item

    Keywords

    fault diagnosis; preventative maintenance; wind turbine; electrical generator; statistical model;
    All these keywords.

    JEL classification:

    • C60 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ito:pchaps:160979. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Slobodan Momcilovic (email available below). General contact details of provider: http://www.intechopen.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.