IDEAS home Printed from https://ideas.repec.org/h/ito/pchaps/122867.html
   My bibliography  Save this book chapter

Adsorption Refrigeration Technologies

In: Sustainable Air Conditioning Systems

Author

Listed:
  • Mahmoud Badawy Elsheniti
  • Osama Elsamni
  • Raya K. Al-dadah
  • Sa'ad Mahmoud
  • Eman Elsayed
  • Khaled Saleh

Abstract

This chapter introduces a comprehensive overview about the principles, challenges and applications of adsorption refrigeration systems (ARSs), as a promising sustainable solution for many of cooling and heating applications. In addition to the features and the basics of ARSs, the following topics have been covered such as characteristics of working pairs, trends in improving the heat and mass transfer of the adsorber; advanced adsorption cycles and performance and operational data of some adsorption refrigeration applications. In some details, the operating range and the performance of ARSs are greatly affected by the employed working adsorbent/refrigerant pairs. Therefore, the study, development and optimum selection of adsorbent/refrigerant pairs, particularly the composite adsorbents, can lead to improving the performance and reliability of ARSs. Regarding the enhancement of heat and mass transfer in the adsorbent bed, two methods are commonly used: one is the development of adsorbents through different coating technologies or new materials such as metal-organic frameworks, and the second is the optimization of the adsorber geometrical parameters and cycle modes. Finally, a brief on some adsorption chillers applications have started to find their share in markets and driven by solar or waste heats.

Suggested Citation

  • Mahmoud Badawy Elsheniti & Osama Elsamni & Raya K. Al-dadah & Sa'ad Mahmoud & Eman Elsayed & Khaled Saleh, 2018. "Adsorption Refrigeration Technologies," Chapters, in: Chaouki Ghenai & Tareq Salameh (ed.), Sustainable Air Conditioning Systems, IntechOpen.
  • Handle: RePEc:ito:pchaps:122867
    DOI: 10.5772/intechopen.73167
    as

    Download full text from publisher

    File URL: https://www.intechopen.com/chapters/59993
    Download Restriction: no

    File URL: https://libkey.io/10.5772/intechopen.73167?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mahmoud Badawy Elsheniti & Mohamed Shaaban Eissa & Hany Al-Ansary & Jamel Orfi & Osama Elsamni & Abdelrahman El-Leathy, 2022. "Examination of Using Aluminum-Foam/Finned-Tube Beds Packed with Maxsorb III for Adsorption Ice Production System," Energies, MDPI, vol. 15(8), pages 1-21, April.
    2. Marcin Sosnowski, 2019. "Evaluation of Heat Transfer Performance of a Multi-Disc Sorption Bed Dedicated for Adsorption Cooling Technology," Energies, MDPI, vol. 12(24), pages 1-19, December.
    3. Gado, Mohamed G. & Ookawara, Shinichi & Nada, Sameh & El-Sharkawy, Ibrahim I., 2021. "Hybrid sorption-vapor compression cooling systems: A comprehensive overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    4. Piotr Boruta & Tomasz Bujok & Łukasz Mika & Karol Sztekler, 2021. "Adsorbents, Working Pairs and Coated Beds for Natural Refrigerants in Adsorption Chillers—State of the Art," Energies, MDPI, vol. 14(15), pages 1-41, August.

    More about this item

    Keywords

    adsorption refrigeration; solar air conditioning; heat recovery; metal-organic frameworks; adsorbent bed;
    All these keywords.

    JEL classification:

    • Q20 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - General
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ito:pchaps:122867. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Slobodan Momcilovic (email available below). General contact details of provider: http://www.intechopen.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.