IDEAS home Printed from https://ideas.repec.org/h/ito/pchaps/106130.html
   My bibliography  Save this book chapter

The Discontinuous Galerkin Finite Element Method for Ordinary Differential Equations

In: Perusal of the Finite Element Method

Author

Listed:
  • Mahboub Baccouch

Abstract

We present an analysis of the discontinuous Galerkin (DG) finite element method for nonlinear ordinary differential equations (ODEs). We prove that the DG solution is $(p + 1) $th order convergent in the $L^2$-norm, when the space of piecewise polynomials of degree $p$ is used. A $ (2p+1) $th order superconvergence rate of the DG approximation at the downwind point of each element is obtained under quasi-uniform meshes. Moreover, we prove that the DG solution is superconvergent with order $p+2$ to a particular projection of the exact solution. The superconvergence results are used to show that the leading term of the DG error is proportional to the $ (p + 1) $-degree right Radau polynomial. These results allow us to develop a residual-based a posteriori error estimator which is computationally simple, efficient, and asymptotically exact. The proposed a posteriori error estimator is proved to converge to the actual error in the $L^2$-norm with order $p+2$. Computational results indicate that the theoretical orders of convergence are optimal. Finally, a local adaptive mesh refinement procedure that makes use of our local a posteriori error estimate is also presented. Several numerical examples are provided to illustrate the global superconvergence results and the convergence of the proposed estimator under mesh refinement.

Suggested Citation

  • Mahboub Baccouch, 2016. "The Discontinuous Galerkin Finite Element Method for Ordinary Differential Equations," Chapters, in: Radostina Vasileva Petrova (ed.), Perusal of the Finite Element Method, IntechOpen.
  • Handle: RePEc:ito:pchaps:106130
    DOI: 10.5772/64967
    as

    Download full text from publisher

    File URL: https://www.intechopen.com/chapters/52253
    Download Restriction: no

    File URL: https://libkey.io/10.5772/64967?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Keywords

    discontinuous Galerkin finite element method; ordinary differential equations; a priori error estimates; superconvergence; a posteriori error estimates; adaptive mesh refinement;
    All these keywords.

    JEL classification:

    • C60 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ito:pchaps:106130. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Slobodan Momcilovic (email available below). General contact details of provider: http://www.intechopen.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.