IDEAS home Printed from https://ideas.repec.org/h/ito/pchaps/105584.html
   My bibliography  Save this book chapter

Interface Engineering and Electrode Engineering for Organic Solar Cells

In: Nanostructured Solar Cells

Author

Listed:
  • Dazheng Chen
  • Chunfu Zhang

Abstract

Interface engineering and electrode engineering play important roles in the performance improvement for organic solar cells (OSCs). We here would investigate the effect of various cathode modifying layers and ITO-free electrodes on the device performance. First, for inverted organic solar cells (IOSCs) with a poly (3-hexylthiophene-2,5-diyl):[6,6]-phenyl C61 butyric acid methyl ester blend, an aqueous solution method using low temperatures is adopted to deposit a ZnO interlayer in IOSCs. When the ZnO annealing temperature is above 80°C, the corresponding IOSCs show senior PCEs over 3.5%. Meanwhile the flexible devices based on poly(ethylene terephthalate) substrate display a PCE of 3.26% and good flexibility. Second, the performance of IOSCs based on AZO cathode and Ca modifier are studied. The resulted IOSCs with an ultrathin Ca modifier (~1 nm) could achieve a senior PCE above 3%, and highly efficient electron transport at AZO/Ca/organic interface, which obviously weakens the light soaking issue. Third, by introducing a 2 nm MoO3 interlayer for Ag anode deposition, the obtained OSCs show an improved PCE of 2.71%, and the flexible device also achieves a comparable PCE of 2.50%. All these investigations may be instructive for further improvement of device performance and the possible commercialization in the future.

Suggested Citation

  • Dazheng Chen & Chunfu Zhang, 2017. "Interface Engineering and Electrode Engineering for Organic Solar Cells," Chapters, in: Narottam Das (ed.), Nanostructured Solar Cells, IntechOpen.
  • Handle: RePEc:ito:pchaps:105584
    DOI: 10.5772/65312
    as

    Download full text from publisher

    File URL: https://www.intechopen.com/chapters/52630
    Download Restriction: no

    File URL: https://libkey.io/10.5772/65312?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuuki Sugano & Keisuke Sato & Naoki Fukata & Kenji Hirakuri, 2017. "Improved Separation and Collection of Charge Carriers in Micro-Pyramidal-Structured Silicon/PEDOT:PSS Hybrid Solar Cells," Energies, MDPI, vol. 10(4), pages 1-13, March.

    More about this item

    Keywords

    organic solar cells; interface engineering; electrode engineering; power conversion efficiency; flexibility;
    All these keywords.

    JEL classification:

    • Q20 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - General
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ito:pchaps:105584. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Slobodan Momcilovic (email available below). General contact details of provider: http://www.intechopen.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.