IDEAS home Printed from https://ideas.repec.org/h/ito/pchaps/100276.html
   My bibliography  Save this book chapter

Intelligent Sliding Surface Design Methods Applied to an IBVS System for Robot Manipulators

In: Applications from Engineering with MATLAB Concepts

Author

Listed:
  • Tolga Yuksel

Abstract

The controller of an image-based visual servoing (IBVS) system is based on the design of the kinematic velocity controller which guarantees exponentially decreasing feature errors. In fact, this controller is using the sliding surface approach of classical Sliding Mode Control (SMC). In SMC, the system dynamics are taken into consideration and the sliding surface is designed according to the physical limitations and desired convergence time. Different design methods are proposed in the literature using adaptive gain, time variations, nonlinear functions, and intelligent methods like fuzzy logic (FL) and genetic algorithms (GA). In this study, five different sliding surface designs with analytical and intelligent methods are modified and applied to an IBVS system to expand these designs to visually guided robot manipulators. The design methods are selected by their convenience and applicability to these types of manipulator systems. To show the performance of the design methods, an IBVS system with six-DOF manipulator is simulated using MATLAB Simulink, Robotics Toolbox, Machine Vision Toolbox, and Fuzzy Logic Toolbox. A comparison of these design methods according to convergence time, error cost function, defined parameters, and motion characteristics is given.

Suggested Citation

  • Tolga Yuksel, 2016. "Intelligent Sliding Surface Design Methods Applied to an IBVS System for Robot Manipulators," Chapters, in: Jan Valdman (ed.), Applications from Engineering with MATLAB Concepts, IntechOpen.
  • Handle: RePEc:ito:pchaps:100276
    DOI: 10.5772/63046
    as

    Download full text from publisher

    File URL: https://www.intechopen.com/chapters/50476
    Download Restriction: no

    File URL: https://libkey.io/10.5772/63046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Keywords

    Sliding surface; visual servoing; robot manipulators; fuzzy logic; Simulink;
    All these keywords.

    JEL classification:

    • C60 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ito:pchaps:100276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Slobodan Momcilovic (email available below). General contact details of provider: http://www.intechopen.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.