IDEAS home Printed from https://ideas.repec.org/h/eme/reinzz/s1049-2585(06)13010-0.html
   My bibliography  Save this book chapter

Bayesian Assessment of Lorenz and Stochastic Dominance In Income Distributions

In: Dynamics of Inequality and Poverty

Author

Listed:
  • Duangkamon Chotikapanich
  • William E. Griffiths

Abstract

Hypothesis tests for dominance in income distributions has received considerable attention in recent literature. See, for example, Barrett and Donald (2003a, b), Davidson and Duclos (2000) and references therein. Such tests are useful for assessing progress towards eliminating poverty and for evaluating the effectiveness of various policy initiatives directed towards welfare improvement. To date the focus in the literature has been on sampling theory tests. Such tests can be set up in various ways, with dominance as the null or alternative hypothesis, and with dominance in either direction (X dominates Y or Y dominates X). The result of a test is expressed as rejection of, or failure to reject, a null hypothesis. In this paper, we develop and apply Bayesian methods of inference to problems of Lorenz and stochastic dominance. The result from a comparison of two income distributions is reported in terms of the posterior probabilities for each of the three possible outcomes: (a) X dominates Y, (b) Y dominates X, and (c) neither X nor Y is dominant. Reporting results about uncertain outcomes in terms of probabilities has the advantage of being more informative than a simple reject/do-not-reject outcome. Whether a probability is sufficiently high or low for a policy maker to take a particular action is then a decision for that policy maker. The methodology is applied to data for Canada from the Family Expenditure Survey for the years 1978 and 1986. We assess the likelihood of dominance from one time period to the next. Two alternative assumptions are made about the income distributions – Dagum and Singh-Maddala – and in each case the posterior probability of dominance is given by the proportion of times a relevant parameter inequality is satisfied by the posterior observations generated by Markov chain Monte Carlo.

Suggested Citation

  • Duangkamon Chotikapanich & William E. Griffiths, 2006. "Bayesian Assessment of Lorenz and Stochastic Dominance In Income Distributions," Research on Economic Inequality, in: Dynamics of Inequality and Poverty, pages 297-321, Emerald Group Publishing Limited.
  • Handle: RePEc:eme:reinzz:s1049-2585(06)13010-0
    DOI: 10.1016/S1049-2585(06)13010-0
    as

    Download full text from publisher

    File URL: https://www.emerald.com/insight/content/doi/10.1016/S1049-2585(06)13010-0/full/html?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://www.emerald.com/insight/content/doi/10.1016/S1049-2585(06)13010-0/full/pdf?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1016/S1049-2585(06)13010-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eme:reinzz:s1049-2585(06)13010-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emerald Support (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.