Nearest Neighbor Imputation for General Parameter Estimation in Survey Sampling
In: The Econometrics of Complex Survey Data
Author
Abstract
Suggested Citation
DOI: 10.1108/S0731-905320190000039012
Download full text from publisher
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Shu Yang & Jae Kwang Kim, 2020. "Asymptotic theory and inference of predictive mean matching imputation using a superpopulation model framework," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(3), pages 839-861, September.
- Chenyin Gao & Katherine Jenny Thompson & Jae Kwang Kim & Shu Yang, 2022. "Nearest neighbour ratio imputation with incomplete multinomial outcome in survey sampling," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 1903-1930, October.
- Maciej Berk{e}sewicz & Greta Bia{l}kowska & Krzysztof Marcinkowski & Magdalena Ma'slak & Piotr Opiela & Robert Pater & Katarzyna Zadroga, 2019. "Enhancing the Demand for Labour survey by including skills from online job advertisements using model-assisted calibration," Papers 1908.06731, arXiv.org.
More about this item
Keywords
Bahadur representation; bootstrap; jackknife variance estimation; matching; missing at random; quantile estimation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eme:aecozz:s0731-905320190000039012. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emerald Support (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.