IDEAS home Printed from https://ideas.repec.org/h/eme/aecozz/s0731-905320140000034008.html
   My bibliography  Save this book chapter

Parallel Constrained Hamiltonian Monte Carlo for BEKK Model Comparison

In: Bayesian Model Comparison

Author

Listed:
  • Martin Burda

Abstract

The BEKK GARCH class of models presents a popular set of tools for applied analysis of dynamic conditional covariances. Within this class the analyst faces a range of model choices that trade off flexibility with parameter parsimony. In the most flexible unrestricted BEKK the parameter dimensionality increases quickly with the number of variables. Covariance targeting decreases model dimensionality but induces a set of nonlinear constraints on the underlying parameter space that are difficult to implement. Recently, the rotated BEKK (RBEKK) has been proposed whereby a targeted BEKK model is applied after the spectral decomposition of the conditional covariance matrix. An easily estimable RBEKK implies a full albeit constrained BEKK for the unrotated returns. However, the degree of the implied restrictiveness is currently unknown. In this paper, we suggest a Bayesian approach to estimation of the BEKK model with targeting based on Constrained Hamiltonian Monte Carlo (CHMC). We take advantage of suitable parallelization of the problem within CHMC utilizing the newly available computing power of multi-core CPUs and Graphical Processing Units (GPUs) that enables us to deal effectively with the inherent nonlinear constraints posed by covariance targeting in relatively high dimensions. Using parallel CHMC we perform a model comparison in terms of predictive ability of the targeted BEKK with the RBEKK in the context of an application concerning a multivariate dynamic volatility analysis of a Dow Jones Industrial returns portfolio. Although the RBEKK does improve over a diagonal BEKK restriction, it is clearly dominated by the full targeted BEKK model.

Suggested Citation

  • Martin Burda, 2014. "Parallel Constrained Hamiltonian Monte Carlo for BEKK Model Comparison," Advances in Econometrics, in: Bayesian Model Comparison, volume 34, pages 155-179, Emerald Group Publishing Limited.
  • Handle: RePEc:eme:aecozz:s0731-905320140000034008
    DOI: 10.1108/S0731-905320140000034008
    as

    Download full text from publisher

    File URL: https://www.emerald.com/insight/content/doi/10.1108/S0731-905320140000034008/full/html?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: no

    File URL: https://www.emerald.com/insight/content/doi/10.1108/S0731-905320140000034008/full/pdf?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: no

    File URL: https://www.emerald.com/insight/content/doi/10.1108/S0731-905320140000034008/full/epub?utm_source=repec&utm_medium=feed&utm_campaign=repec&title=10.1108/S0731-905320140000034008
    Download Restriction: no

    File URL: https://libkey.io/10.1108/S0731-905320140000034008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gillen, Benjamin J., 2014. "An empirical Bayesian approach to stein-optimal covariance matrix estimation," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 402-420.

    More about this item

    Keywords

    Dynamic conditional covariances; Markov chain Monte Carlo; GPU acceleration; C11; C15; C32; C63;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eme:aecozz:s0731-905320140000034008. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emerald Support (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.