IDEAS home Printed from https://ideas.repec.org/h/eme/aecozz/s0731-9053(05)20025-7.html
   My bibliography  Save this book chapter

Overlaying Time Scales in Financial Volatility Data

In: Econometric Analysis of Financial and Economic Time Series

Author

Listed:
  • Eric Hillebrand

Abstract

Apart from the well-known, high persistence of daily financial volatility data, there is also a short correlation structure that reverts to the mean in less than a month. We find this short correlation time scale in six different daily financial time series and use it to improve the short-term forecasts from generalized auto-regressive conditional heteroskedasticity (GARCH) models. We study different generalizations of GARCH that allow for several time scales. On our holding sample, none of the considered models can fully exploit the information contained in the short scale. Wavelet analysis shows a correlation between fluctuations on long and on short scales. Models accounting for this correlation as well as long-memory models for absolute returns appear to be promising.

Suggested Citation

  • Eric Hillebrand, 2006. "Overlaying Time Scales in Financial Volatility Data," Advances in Econometrics, in: Econometric Analysis of Financial and Economic Time Series, pages 153-178, Emerald Group Publishing Limited.
  • Handle: RePEc:eme:aecozz:s0731-9053(05)20025-7
    DOI: 10.1016/S0731-9053(05)20025-7
    as

    Download full text from publisher

    File URL: https://www.emerald.com/insight/content/doi/10.1016/S0731-9053(05)20025-7/full/html?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://www.emerald.com/insight/content/doi/10.1016/S0731-9053(05)20025-7/full/pdf?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1016/S0731-9053(05)20025-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eme:aecozz:s0731-9053(05)20025-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emerald Support (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.