IDEAS home Printed from https://ideas.repec.org/h/eme/aecozz/s0731-9053(05)20024-5.html
   My bibliography  Save this book chapter

Boosting-Based Frameworks in Financial Modeling: Application to Symbolic Volatility Forecasting

In: Econometric Analysis of Financial and Economic Time Series

Author

Listed:
  • Valeriy V. Gavrishchaka

Abstract

Increasing availability of the financial data has opened new opportunities for quantitative modeling. It has also exposed limitations of the existing frameworks, such as low accuracy of the simplified analytical models and insufficient interpretability and stability of the adaptive data-driven algorithms. I make the case that boosting (a novel, ensemble learning technique) can serve as a simple and robust framework for combining the best features of the analytical and data-driven models. Boosting-based frameworks for typical financial and econometric applications are outlined. The implementation of a standard boosting procedure is illustrated in the context of the problem of symbolic volatility forecasting for IBM stock time series. It is shown that the boosted collection of the generalized autoregressive conditional heteroskedastic (GARCH)-type models is systematically more accurate than both the best single model in the collection and the widely used GARCH(1,1) model.

Suggested Citation

  • Valeriy V. Gavrishchaka, 2006. "Boosting-Based Frameworks in Financial Modeling: Application to Symbolic Volatility Forecasting," Advances in Econometrics, in: Econometric Analysis of Financial and Economic Time Series, pages 123-151, Emerald Group Publishing Limited.
  • Handle: RePEc:eme:aecozz:s0731-9053(05)20024-5
    DOI: 10.1016/S0731-9053(05)20024-5
    as

    Download full text from publisher

    File URL: https://www.emerald.com/insight/content/doi/10.1016/S0731-9053(05)20024-5/full/html?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://www.emerald.com/insight/content/doi/10.1016/S0731-9053(05)20024-5/full/pdf?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1016/S0731-9053(05)20024-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eme:aecozz:s0731-9053(05)20024-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emerald Support (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.