IDEAS home Printed from https://ideas.repec.org/h/eme/aecozz/s0731-9053(05)20023-3.html
   My bibliography  Save this book chapter

Estimation of Long-Memory Time Series Models: a Survey of Different Likelihood-Based Methods

In: Econometric Analysis of Financial and Economic Time Series

Author

Listed:
  • Ngai Hang Chan
  • Wilfredo Palma

Abstract

Since the seminal works by Granger and Joyeux (1980) and Hosking (1981), estimations of long-memory time series models have been receiving considerable attention and a number of parameter estimation procedures have been proposed. This paper gives an overview of this plethora of methodologies with special focus on likelihood-based techniques. Broadly speaking, likelihood-based techniques can be classified into the following categories: the exact maximum likelihood (ML) estimation (Sowell, 1992; Dahlhaus, 1989), ML estimates based on autoregressive approximations (Granger & Joyeux, 1980; Li & McLeod, 1986), Whittle estimates (Fox & Taqqu, 1986; Giraitis & Surgailis, 1990), Whittle estimates with autoregressive truncation (Beran, 1994a), approximate estimates based on the Durbin–Levinson algorithm (Haslett & Raftery, 1989), state-space-based maximum likelihood estimates for ARFIMA models (Chan & Palma, 1998), and estimation of stochastic volatility models (Ghysels, Harvey, & Renault, 1996; Breidt, Crato, & de Lima, 1998; Chan & Petris, 2000) among others. Given the diversified applications of these techniques in different areas, this review aims at providing a succinct survey of these methodologies as well as an overview of important related problems such as the ML estimation with missing data (Palma & Chan, 1997), influence of subsets of observations on estimates and the estimation of seasonal long-memory models (Palma & Chan, 2005). Performances and asymptotic properties of these techniques are compared and examined. Inter-connections and finite sample performances among these procedures are studied. Finally, applications to financial time series of these methodologies are discussed.

Suggested Citation

  • Ngai Hang Chan & Wilfredo Palma, 2006. "Estimation of Long-Memory Time Series Models: a Survey of Different Likelihood-Based Methods," Advances in Econometrics, in: Econometric Analysis of Financial and Economic Time Series, pages 89-121, Emerald Group Publishing Limited.
  • Handle: RePEc:eme:aecozz:s0731-9053(05)20023-3
    DOI: 10.1016/S0731-9053(05)20023-3
    as

    Download full text from publisher

    File URL: https://www.emerald.com/insight/content/doi/10.1016/S0731-9053(05)20023-3/full/html?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://www.emerald.com/insight/content/doi/10.1016/S0731-9053(05)20023-3/full/pdf?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1016/S0731-9053(05)20023-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eme:aecozz:s0731-9053(05)20023-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emerald Support (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.