IDEAS home Printed from https://ideas.repec.org/h/eme/aecozz/s0731-9053(04)18004-3.html
   My bibliography  Save this book chapter

A Bayesian Probit Model With Spatial Dependencies

In: Spatial and Spatiotemporal Econometrics

Author

Listed:
  • Tony E. Smith
  • James P. LeSage

Abstract

A Bayesian probit model with individual effects that exhibit spatial dependencies is set forth. Since probit models are often used to explain variation in individual choices, these models may well exhibit spatial interaction effects due to the varying spatial location of the decision makers. That is, individuals located at similar points in space may tend to exhibit similar choice behavior. The model proposed here allows for a parameter vector of spatial interaction effects that takes the form of a spatial autoregression. This model extends the class of Bayesian spatial logit/probit models presented in LeSage (2000) and relies on a hierachical construct that we estimate via Markov Chain Monte Carlo methods. We illustrate the model by applying it to the 1996 presidential election results for 3,110 U.S. counties.

Suggested Citation

  • Tony E. Smith & James P. LeSage, 2004. "A Bayesian Probit Model With Spatial Dependencies," Advances in Econometrics, in: Spatial and Spatiotemporal Econometrics, pages 127-160, Emerald Group Publishing Limited.
  • Handle: RePEc:eme:aecozz:s0731-9053(04)18004-3
    DOI: 10.1016/S0731-9053(04)18004-3
    as

    Download full text from publisher

    File URL: https://www.emerald.com/insight/content/doi/10.1016/S0731-9053(04)18004-3/full/html?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://www.emerald.com/insight/content/doi/10.1016/S0731-9053(04)18004-3/full/pdf?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1016/S0731-9053(04)18004-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eme:aecozz:s0731-9053(04)18004-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emerald Support (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.