IDEAS home Printed from https://ideas.repec.org/h/eme/aecozz/s0731-9053(04)18003-1.html
   My bibliography  Save this book chapter

Bayesian Model Choice In Spatial Econometrics

In: Spatial and Spatiotemporal Econometrics

Author

Listed:
  • Leslie W. Hepple

Abstract

Within spatial econometrics a whole family of different spatial specifications has been developed, with associated estimators and tests. This lead to issues of model comparison and model choice, measuring the relative merits of alternative specifications and then using appropriate criteria to choose the “best” model or relative model probabilities. Bayesian theory provides a comprehensive and coherent framework for such model choice, including both nested and non-nested models within the choice set. The paper reviews the potential application of this Bayesian theory to spatial econometric models, examining the conditions and assumptions under which application is possible. Problems of prior distributions are outlined, and Bayes factors and marginal likelihoods are derived for a particular subset of spatial econometric specifications. These are then applied to two well-known spatial data-sets to illustrate the methods. Future possibilities, and comparisons with other approaches to both Bayesian and non-Bayesian model choice are discussed.

Suggested Citation

  • Leslie W. Hepple, 2004. "Bayesian Model Choice In Spatial Econometrics," Advances in Econometrics, in: Spatial and Spatiotemporal Econometrics, pages 101-126, Emerald Group Publishing Limited.
  • Handle: RePEc:eme:aecozz:s0731-9053(04)18003-1
    DOI: 10.1016/S0731-9053(04)18003-1
    as

    Download full text from publisher

    File URL: https://www.emerald.com/insight/content/doi/10.1016/S0731-9053(04)18003-1/full/html?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://www.emerald.com/insight/content/doi/10.1016/S0731-9053(04)18003-1/full/pdf?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1016/S0731-9053(04)18003-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eme:aecozz:s0731-9053(04)18003-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emerald Support (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.