IDEAS home Printed from https://ideas.repec.org/h/eme/aecozz/s0731-9053(03)17006-5.html
   My bibliography  Save this book chapter

Quasi–Maximum Likelihood Estimation With Bounded Symmetric Errors

In: Maximum Likelihood Estimation of Misspecified Models: Twenty Years Later

Author

Listed:
  • Douglas Miller
  • James Eales
  • Paul Preckel

Abstract

We propose a quasi–maximum likelihood estimator for the location parameters of a linear regression model with bounded and symmetrically distributed errors. The error outcomes are restated as the convex combination of the bounds, and we use the method of maximum entropy to derive the quasi–log likelihood function. Under the stated model assumptions, we show that the proposed estimator is unbiased, consistent, and asymptotically normal. We then conduct a series of Monte Carlo exercises designed to illustrate the sampling properties of the quasi–maximum likelihood estimator relative to the least squares estimator. Although the least squares estimator has smaller quadratic risk under normal and skewed error processes, the proposed QML estimator dominates least squares for the bounded and symmetric error distribution considered in this paper.

Suggested Citation

  • Douglas Miller & James Eales & Paul Preckel, 2003. "Quasi–Maximum Likelihood Estimation With Bounded Symmetric Errors," Advances in Econometrics, in: Maximum Likelihood Estimation of Misspecified Models: Twenty Years Later, pages 133-148, Emerald Group Publishing Limited.
  • Handle: RePEc:eme:aecozz:s0731-9053(03)17006-5
    DOI: 10.1016/S0731-9053(03)17006-5
    as

    Download full text from publisher

    File URL: https://www.emerald.com/insight/content/doi/10.1016/S0731-9053(03)17006-5/full/html?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://www.emerald.com/insight/content/doi/10.1016/S0731-9053(03)17006-5/full/pdf?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1016/S0731-9053(03)17006-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eme:aecozz:s0731-9053(03)17006-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emerald Support (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.