IDEAS home Printed from https://ideas.repec.org/h/elg/eechap/20411_3.html
   My bibliography  Save this book chapter

Energy security

In: The Global Rise of the Modern Plug-In Electric Vehicle

Author

Listed:
  • .

Abstract

Energy insecurity played a pivotal role in the emergence of governmental interest in the modern PEV. The interest began first in Japan and then in the United States. Twenty years later, China also saw energy-security advantages of a transition to PEVs. Europe, though affected by oil crises of the 1970s, chose a pro-diesel strategy rather than serious exploration of BEVs. Japan, Germany and the US also developed strong programs to develop FCVs. The energy security rationale for PEVs and FCVs receded somewhat after the North American fracking revolution began around 2010 and world oil prices collapsed in 2014. Nonetheless, energy-security concerns remain in some countries, especially China, Germany and Japan. Regulatory accounting schemes can be tweaked in various ways to encourage or discourage automakers from offering PEVs. The fuel-economy standards in China and the US favor PEVs as a compliance technology more than the standards in Japan.

Suggested Citation

  • ., 2021. "Energy security," Chapters, in: The Global Rise of the Modern Plug-In Electric Vehicle, chapter 3, pages 73-109, Edward Elgar Publishing.
  • Handle: RePEc:elg:eechap:20411_3
    as

    Download full text from publisher

    File URL: https://www.elgaronline.com/view/9781800880122.00007.xml
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yeo, Lip Siang & Teng, Sin Yong & Ng, Wendy Pei Qin & Lim, Chun Hsion & Leong, Wei Dong & Lam, Hon Loong & Wong, Yat Choy & Sunarso, Jaka & How, Bing Shen, 2022. "Sequential optimization of process and supply chains considering re-refineries for oil and gas circularity," Applied Energy, Elsevier, vol. 322(C).
    2. Nordgård-Hansen, Ellen & Kishor, Nand & Midttømme, Kirsti & Risinggård, Vetle Kjær & Kocbach, Jan, 2022. "Case study on optimal design and operation of detached house energy system: Solar, battery, and ground source heat pump," Applied Energy, Elsevier, vol. 308(C).
    3. Choi, Hyunhong & Woo, JongRoul, 2022. "Investigating emerging hydrogen technology topics and comparing national level technological focus: Patent analysis using a structural topic model," Applied Energy, Elsevier, vol. 313(C).
    4. Patankar, Neha & Fell, Harrison G. & Rodrigo de Queiroz, Anderson & Curtis, John & DeCarolis, Joseph F., 2022. "Improving the representation of energy efficiency in an energy system optimization model," Applied Energy, Elsevier, vol. 306(PB).
    5. Delorme, Maxence & Santini, Alberto, 2022. "Energy-efficient automated vertical farms," Omega, Elsevier, vol. 109(C).
    6. Chen, Wei-Han & You, Fengqi, 2022. "Sustainable building climate control with renewable energy sources using nonlinear model predictive control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    7. Rinaldi, Giovanni & Garcia-Teruel, Anna & Jeffrey, Henry & Thies, Philipp R. & Johanning, Lars, 2021. "Incorporating stochastic operation and maintenance models into the techno-economic analysis of floating offshore wind farms," Applied Energy, Elsevier, vol. 301(C).
    8. Stephen Littlechild, 2021. "The challenge of removing a mistaken price cap," Economic Affairs, Wiley Blackwell, vol. 41(3), pages 391-415, October.
    9. Diaz de Garayo, S. & Martínez, A. & Astrain, D., 2022. "Optimal combination of an air-to-air thermoelectric heat pump with a heat recovery system to HVAC a passive house dwelling," Applied Energy, Elsevier, vol. 309(C).
    10. Hassan, Aakash & Al-Abdeli, Yasir M. & Masek, Martin & Bass, Octavian, 2022. "Optimal sizing and energy scheduling of grid-supplemented solar PV systems with battery storage: Sensitivity of reliability and financial constraints," Energy, Elsevier, vol. 238(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:elg:eechap:20411_3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Darrel McCalla (email available below). General contact details of provider: http://www.e-elgar.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.