IDEAS home Printed from https://ideas.repec.org/b/wfo/wstudy/34140.html
   My bibliography  Save this book

Wahrscheinlichkeits-Überschreitungskurven für Hochwasserkatastrophen in Österreich

Author

Listed:
  • Thomas Url

    (WIFO)

Abstract

Wahrscheinlichkeits-Überschreitungskurven sind eine Möglichkeit zur optischen Darstellung und Nutzung der Ergebnisse eines Katastrophenmodells. Sie beschreiben die jährliche Wahrscheinlichkeit, mit der ein gegebenes Portfolio von Objekten ein vorgegebenes Schadensausmaß potentiell überschreitet. Die hier für Österreich erstmals berechneten Wahrscheinlichkeits-Überschreitungskurven für Hochwasserkatastrophen zeigen, dass für Wohngebäude privater Haushalte in Österreich ein Gesamtschadenvolumen von 100 Mio. € einmal in 1.000 Fällen (0,1%) überschritten wird; umgekehrt ausgedrückt bleibt der Gesamtschaden an privaten Wohngebäuden in 999 von 1.000 Fällen (99,9%) unter dem Wert von 100 Mio. €. Die Wahrscheinlichkeits-Überschreitungskurven erlauben auch die Berechnung der Grenzwerte für ein Sicherheitsniveau von 1 in 10.000 Fällen (0,01%). In diesem Fall würde für private Wohngebäude ein Gesamtschaden von 400 Mio. € einmal in 10.000 Fällen überschritten. Höhere Schäden können durchaus auftreten, die entsprechende Eintrittswahrscheinlichkeit ist jedoch gering. Die Berechnung von Wahrscheinlichkeits-Überschreitungskurven für öffentliche Gebäude, Gebäude des Dienstleistungssektors, der Industrie und des Gewerbes sowie sonstige Gebäude erlaubt eine umfassende Einschätzung des Hochwasserrisikos auf der Grundlage des Bestands aus dem Jahr 2005.

Suggested Citation

  • Thomas Url, 2008. "Wahrscheinlichkeits-Überschreitungskurven für Hochwasserkatastrophen in Österreich," WIFO Studies, WIFO, number 34140.
  • Handle: RePEc:wfo:wstudy:34140
    Note: With English abstract.
    as

    Download full text from publisher

    File URL: https://www.wifo.ac.at/wwa/pubid/34140
    File Function: abstract
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Franz Sinabell & Thomas Url, 2006. "Versicherungen als effizientes Mittel zur Risikotragung von Naturgefahren," WIFO Studies, WIFO, number 28181.
    2. Dwight M. Jaffee, 2006. "Commentary on "Should the government provide insurance for catastrophes?"," Review, Federal Reserve Bank of St. Louis, vol. 88(Jul), pages 381-386.
    3. Howard Kunreuther & Mark Pauly, 2006. "Rules rather than discretion: Lessons from Hurricane Katrina," Journal of Risk and Uncertainty, Springer, vol. 33(1), pages 101-116, September.
    4. Howard Kunreuther & Mark Pauly, 2006. "Rules Rather Than Discretion: Lessons from Hurricane Katrina," NBER Working Papers 12503, National Bureau of Economic Research, Inc.
    5. J. David Cummins, 2007. "Reinsurance for Natural and Man‐Made Catastrophes in the United States: Current State of the Market and Regulatory Reforms," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 10(2), pages 179-220, September.
    6. Jaffee Dwight M & Russell Thomas, 2006. "Should Governments Provide Catastrophe Insurance?," The Economists' Voice, De Gruyter, vol. 3(5), pages 1-8, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patricia H. Born & Barbara Klimaszewski-Blettner, 2013. "Should I Stay or Should I Go? The Impact of Natural Disasters and Regulation on U.S. Property Insurers’ Supply Decisions," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(1), pages 1-36, March.
    2. Aglaia Petseti & Milton Nektarios, 2012. "Proposal for a National Earthquake Insurance Programme for Greece," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 37(2), pages 377-400, April.
    3. Mario Jametti & Thomas von Ungern-Sternberg, 2009. "Hurricane Insurance in Florida," Quaderni della facoltà di Scienze economiche dell'Università di Lugano 0905, USI Università della Svizzera italiana.
    4. Wang, Chunhua, 2014. "Regulating land development in a natural disaster-prone area: The roles of building codes," Resource and Energy Economics, Elsevier, vol. 36(1), pages 209-228.
    5. Osberghaus, Daniel & Reif, Christiane, 2021. "How do different compensation schemes and loss experience affect insurance decisions? Experimental evidence from two independent and heterogeneous samples," Ecological Economics, Elsevier, vol. 187(C).
    6. Ji Yun Lee & Fangjiao Ma & Yue Li, 2022. "Understanding homeowner proactive actions for managing wildfire risks," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1525-1547, November.
    7. SAWADA Yasuyuki & MASAKI Tatsujiro & NAKATA Hiroyuki & SEKIGUCHI Kunio, 2017. "Natural Disasters: Financial preparedness of corporate Japan," Discussion papers 17014, Research Institute of Economy, Trade and Industry (RIETI).
    8. Dobes Leo & Jotzo Frank & Stern David I., 2014. "The Economics of Global Climate Change: A Historical Literature Review," Review of Economics, De Gruyter, vol. 65(3), pages 281-320, December.
    9. Wang, Chen & Sun, Jiayi & Russell, Roddy & Daziano, Ricardo A., 2018. "Analyzing willingness to improve the resilience of New York City's transportation system," Transport Policy, Elsevier, vol. 69(C), pages 10-19.
    10. Paul A. Raschky & Manijeh Schwindt, 2016. "Aid, Catastrophes and the Samaritan's Dilemma," Economica, London School of Economics and Political Science, vol. 83(332), pages 624-645, October.
    11. Howard C. Kunreuther & Erwann O. Michel-Kerjan, 2007. "Evaluating The Effectiveness of Terrorism Risk Financing Solutions," NBER Working Papers 13359, National Bureau of Economic Research, Inc.
    12. T. Ermolieva & T. Filatova & Y. Ermoliev & M. Obersteiner & K. M. de Bruijn & A. Jeuken, 2017. "Flood Catastrophe Model for Designing Optimal Flood Insurance Program: Estimating Location‐Specific Premiums in the Netherlands," Risk Analysis, John Wiley & Sons, vol. 37(1), pages 82-98, January.
    13. W. Botzen & J. Bergh & L. Bouwer, 2010. "Climate change and increased risk for the insurance sector: a global perspective and an assessment for the Netherlands," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 52(3), pages 577-598, March.
    14. Thompson Fred & Rizova Polly, 2015. "How Government Creates Value?," Economic Themes, Sciendo, vol. 53(4), pages 449-466, December.
    15. Eileen Norcross & Anthony Skriba, 2010. "The Road Home: Helping Homeowners in the Gulf After Katrina," Chapters, in: Emily Chamlee-Wright & Virgil Henry Storr (ed.), The Political Economy of Hurricane Katrina and Community Rebound, chapter 11, Edward Elgar Publishing.
    16. Jacqueline Volkman-Wise, 2015. "Representativeness and managing catastrophe risk," Journal of Risk and Uncertainty, Springer, vol. 51(3), pages 267-290, December.
    17. Poontirakul, Porntida & Brown, Charlotte & Noy, Ilan & Seville, Erica & Vargo, John, 2016. "The role of commercial insurance in post-disaster recovery: Quantitative evidence from the 2011 Christchurch earthquake," Working Paper Series 19396, Victoria University of Wellington, School of Economics and Finance.
    18. Andrew Royal, 2017. "Dynamics in risk taking with a low-probability hazard," Journal of Risk and Uncertainty, Springer, vol. 55(1), pages 41-69, August.
    19. Kumazawa Risa & Query J. Tim & Yanochik Mark A., 2011. "A Real-Options Approach to Post-Hurricane Loss Valuation of Damage Property: Rebuild or Repair?," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 5(1), pages 1-14, March.
    20. Filatova, Tatiana & Parker, Dawn Cassandra & van der Veen, Anne, 2011. "The Implications of Skewed Risk Perception for a Dutch Coastal Land Market: Insights from an Agent-Based Computational Economics Model," Agricultural and Resource Economics Review, Northeastern Agricultural and Resource Economics Association, vol. 40(3), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wfo:wstudy:34140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Florian Mayr (email available below). General contact details of provider: https://edirc.repec.org/data/wifooat.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.