IDEAS home Printed from https://ideas.repec.org/b/mtp/titles/0262039176.html
   My bibliography  Save this book

The AI Advantage: How to Put the Artificial Intelligence Revolution to Work

Author

Listed:
  • Davenport, Thomas H.

    (Babson College)

Abstract

In The AI Advantage, Thomas Davenport offers a guide to using artificial intelligence in business. He describes what technologies are available and how companies can use them for business benefits and competitive advantage. He cuts through the hype of the AI craze—remember when it seemed plausible that IBM’s Watson could cure cancer?—to explain how businesses can put artificial intelligence to work now, in the real world. His key recommendation: don’t go for the “moonshot” (curing cancer, or synthesizing all investment knowledge); look for the “low-hanging fruit” to make your company more efficient. Davenport explains that the business value AI offers is solid rather than sexy or splashy. AI will improve products and processes and make decisions better informed—important but largely invisible tasks. AI technologies won’t replace human workers but augment their capabilities, with smart machines to work alongside smart people. AI can automate structured and repetitive work; provide extensive analysis of data through machine learning (“analytics on steroids”), and engage with customers and employees via chatbots and intelligent agents. Companies should experiment with these technologies and develop their own expertise. Davenport describes the major AI technologies and explains how they are being used, reports on the AI work done by large commercial enterprises like Amazon and Google, and outlines strategies and steps to becoming a cognitive corporation. This book provides an invaluable guide to the real-world future of business AI. A book in the Management on the Cutting Edge series, published in cooperation with MIT Sloan Management Review.

Suggested Citation

  • Davenport, Thomas H., 2018. "The AI Advantage: How to Put the Artificial Intelligence Revolution to Work," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262039176, December.
  • Handle: RePEc:mtp:titles:0262039176
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Keywords

    artificial intelligence; AI; cognitive technology; cognitive technologies; future of work; business strategy; business process reengineering; worker automation; deep learning; natural language processing; expert systems; robots; robotic process automation; statistical machine learning; neural networks; worker augmentation; enterprise AI;
    All these keywords.

    JEL classification:

    • L20 - Industrial Organization - - Firm Objectives, Organization, and Behavior - - - General
    • M00 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - General - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mtp:titles:0262039176. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: The MIT Press (email available below). General contact details of provider: http://mitpress.mit.edu .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.